

Environmental Assessment

APPENDIX Q

LAND CONTAMINATION ASSESSMENT

REPORT

Tarrawonga Coal Project

Land Contamination Assessment

Prepared for: Whitehaven Coal Mining Pty Ltd

Document No.: 11-719-R-001 Date: 19/08/2011

DISTRIBUTION

Tarrawonga Coal Project Land Contamination Assessment

19/08/2011

Copies	Recipient	Copies	Recipient
1 EC	Lucas Burns – Resource Strategies		

Ву

Lloyd Consulting Pty Ltd

ABN: 39 371 481 914 30 Heather Street PO Box 320

Wilston QLD 4051

Web: www.lloydconsulting.com.au

P: 07 3352 7300 F: 07 3352 7333

Leona Kopittke

Senior Environmental Consultant

Trevor Lloyd

Director / Principal

CONTENTS

1	INTRODUCTION	1
1.1	Objectives and Scope of Works	1
1.2	Methodology	
1.3	Report Structure	
1.5	neport of detaile	
2	STAGE 1 - SITE DESCRIPTION	6
2.1	Site Details	6
2.2	Land Use Activities	6
2.3	Regional Geology	7
2.4	Site Geology	7
2.5	Site Topography	7
2.6	Regional Hydrogeology	7
2.7	Surface Waters	8
2.8	Underground Utilities Search	
3	STAGE 1 - SITE HISTORY	9
3.1	Historical Aerial Photograph Review	9
4	STAGE 1 - SITE INVESTIGATIONS	10
4.1	On-site Observations	10
4.2	Potential Contamination	17
5	STAGE 1 - SOIL AND SURFACE WATER INVESTIGATIONS	19
5.1	Soil Investigation Program	19
5.1.1	Sampling Program	19
5.1.2	Sampling Procedures	23
5.1.3	Assessment Criteria	24
5.1.4	Analysis Results	25
5.2	Surface Water Investigation Program	27
5.2.1	Sampling Program	27
5.2.2		
	Sampling Procedures	27
5.2.3	Sampling ProceduresAssessment Criteria	
5.2.3 5.2.4	, -	28
	Assessment Criteria	28 29
5.2.4	Assessment Criteria	28 29
5.2.4 6	Assessment Criteria	2832
5.2.4 6 6.1	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination	28323232
5.2.4 6 6.1 6.2	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program	2832323232
5.2.4 6 6.1 6.2 6.2.1	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program Sampling Program	283232323232
5.2.4 6 6.1 6.2 6.2.1 6.2.2	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program Sampling Program Sampling Procedures	28323232323232
5.2.4 6 6.1 6.2 6.2.1 6.2.2 6.2.2	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program Sampling Program Sampling Procedures Laboratory Analysis	2832323232323233
5.2.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program Sampling Program Sampling Procedures Laboratory Analysis Surface Water Fieldworks Program	28 32 32 32 32 32 33
5.2.4 6 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.3.1	Assessment Criteria Analysis Results STAGE 2 – DETAILED INVESTIGATION Summary of Identified Site Contamination Soil Fieldworks Program Sampling Program Sampling Procedures Laboratory Analysis Surface Water Fieldworks Program Sampling Program.	2832323232323434

7	QUALITY ASSURANCE AND QUALITY CONTROL	37				
7.1	Data Quality Objectives	37				
7.2	Field Quality Assurance and Quality Control	38				
7.3	Laboratory Quality Assurance and Quality Control	38				
7.3.1	Laboratory and Field Duplicates	39				
7.4	Data Quality Objective Completion	40				
7.5	Discussion of Data Quality Objective Completion	41				
7.5.1	Laboratory Documentation					
7.5.2	Rinsate Sample	41				
7.5.3	RPDs					
8	REMEDIATION MANAGEMENT PLAN	42				
8.1	Objectives	42				
8.2	Identified Areas of Contamination	42				
8.3	Environmental Guidelines	43				
8.4	Site Contamination Remediation Strategies	43				
8.5	Remediation Criteria	44				
8.6	Remediation Program	45				
8.6.1	General Environmental Controls	46				
8.6.2	Offsite Disposal of Contaminated Soils	46				
8.6.3	Unexpected Contamination	46				
8.6.4	Validation Sampling	46				
8.6.5	Quality Assurance / Quality Control	46				
8.7	Health and Safety	47				
8.8	Reporting Requirements	47				
9	CONCLUSIONS AND RECOMMENDATIONS	48				
10	REFERENCES	50				
APPEN	DIX A – S149 PLANNING CERTIFICATES					
APPEN	DIX B – BORELOGS					
APPEN	DIX C – DIAL BEFORE YOU DIG					
APPEN	DIX D – HISTORICAL PHOTOGRAPHS					
APPEN	APPENDIX E - CALIBRATION CERTIFICATES					
APPENDIX F – SOIL AND SURFACE WATER ANALYSIS RESULTS						
APPEN	APPENDIX G – LABORATORY DOCUMENTATION					
APPEN	DIX H – RELATIVE PERCENT DIFFERENCE CALCULATIONS					

LIST OF TABLES

- Table 3-1 Historical Aerial Review
- Table 4-1 Possible Sources of Contamination
- Table 5-1 Summary of Soil Sampling and Analysis Program
- Table 5-2 Soil Site Assessment Criteria
- Table 5-3 Summary of Soil Analysis Results
- Table 5-4 Summary of Soil Site Assessment Criteria Exceedances
- Table 5-5 Summary of Surface Water Sampling and Analysis Program
- Table 5-6 Surface Water Site Assessment Criteria
- Table 5-7 Summary of Surface Water Analysis Results
- Table 5-8 Summary of Surface Water Site Assessment Criteria Exceedances
- Table 6-1 Summary of Stage 2 Soil Analysis Results
- Table 6-2 In-situ Surface Water Monitoring Results
- Table 6-3 Summary of Stage 2 Surface Water Analysis Results
- Table 6-4 Summary of Surface Water Site Assessment Criteria Exceedances
- Table 7-1 Evaluation Criteria
- Table 7-2 QA/QC Protocols
- Table 7-3 Laboratory QA/QC
- Table 7-4 Data Quality Objectives Completion
- Table 8-1 Remediation Strategy
- Table 8-2 Site Acceptance Criteria

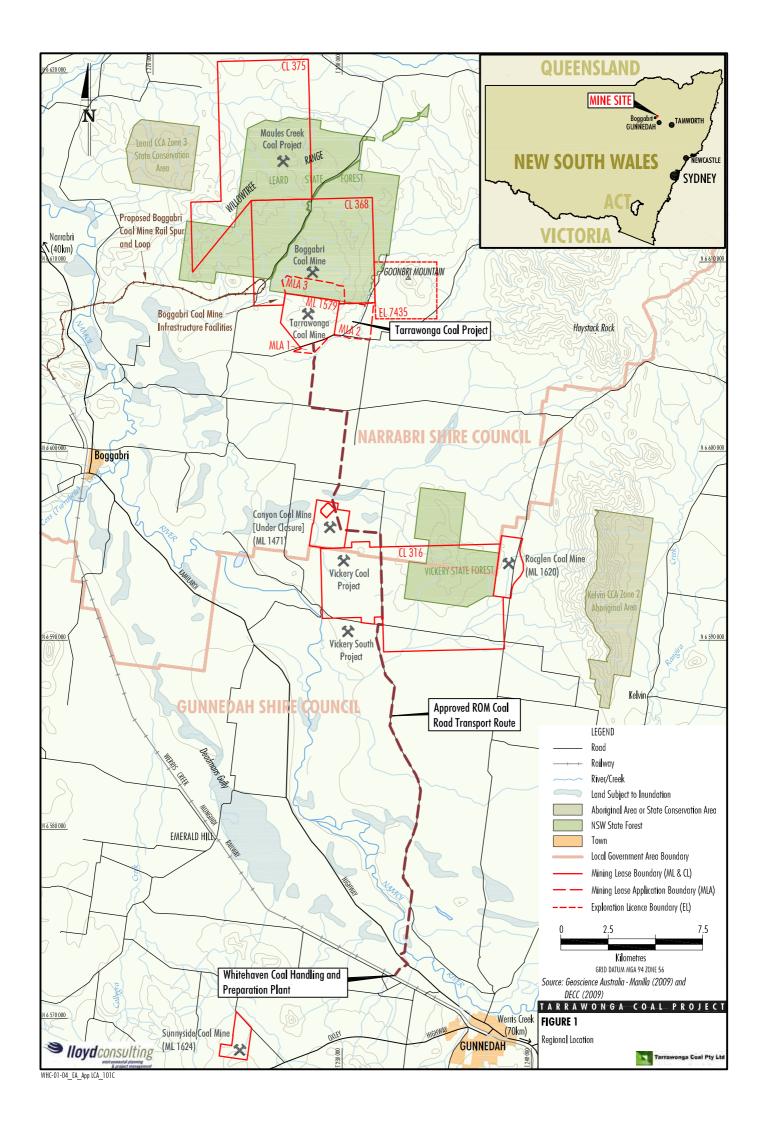
LIST OF FIGURES

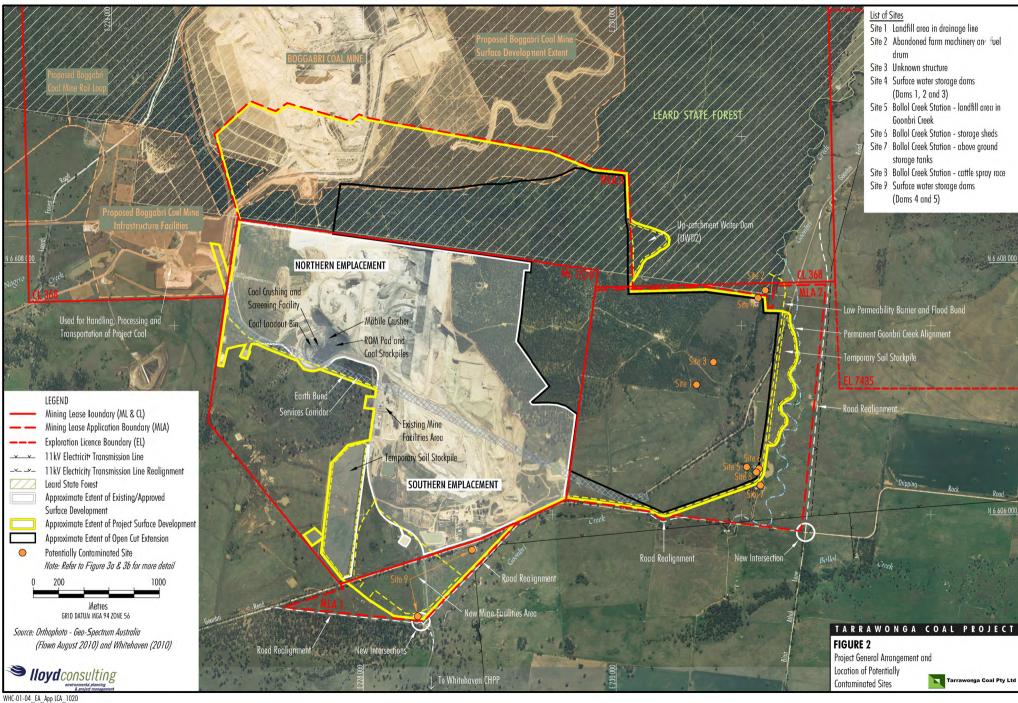
- Figure 1 Regional Location
- Figure 2 Project General Arrangement and Location of Potentially Contaminated Sites
- Figure 3a Soil and Surface Water Sample Site Locations Potentially Contaminated Sites 1 to 4
- Figure 3b Soil and Surface Water Sample Site Locations Potentially Contaminated Sites 5 to 9

1 INTRODUCTION

The Tarrawonga Coal Mine is an open cut mining operation located approximately 15 kilometres (km) north-east of Boggabri and 42 km north-northwest of Gunnedah in New South Wales (NSW) (Figure 1). Tarrawonga Coal Pty Ltd (TCPL) is the owner and operator of the Tarrawonga Coal Mine, which is a joint venture between Whitehaven Coal Mining Pty Ltd (Whitehaven) (70% interest) and Boggabri Coal Pty Ltd (a wholly owned subsidiary of Idemitsu Australia Resources Pty Ltd) (30% interest). The Tarrawonga Coal Mine commenced operations in 2006 and currently produces up to approximately 2 million tonnes per annum (Mtpa) of run-of-mine (ROM) coal.

The Tarrawonga Coal Project (the Project) would involve the continuation and extension of open cut mining operations at the Tarrawonga Coal Mine and would facilitate a ROM coal production rate of up to 3 Mtpa. The proposed life of the Project is 17 years, commencing 1 January 2013.


The approximate extent of the existing and approved surface development (including open cut, mine waste rock emplacement, soil stockpiles and infrastructure areas) at the Tarrawonga Coal Mine are shown on Figure 2.


A detailed description of the Project is provided in Section 2 of the Main Report of the Environmental Assessment (EA).

This Land Contamination Assessment has been prepared for the area within Mining Lease Application (MLA) 1 and MLA 2 (the Site) (Figure 2) prior to the change in land use as part of the Project. The MLA 3 area has not been assessed in this study as it is located in existing Coal Lease (CL) 368 (i.e. existing coal mining land use) and therefore no change of use would occur as a result of the Project. The Land Contamination Assessment consists of a Stage 1 – Preliminary Investigation and a Stage 2 – Detailed Investigation of the Site.

1.1 Objectives and Scope of Works

The objectives of the Stage 1 – Preliminary Investigation were to identify any past or present potentially contaminating activities, provide a preliminary assessment of any contamination and, if required, provide a basis for a more detailed investigation (i.e. Stage 2 – Detailed Investigation).

The scope of work conducted for the Stage 1 – Preliminary Investigation is as follows:

- A review of the Site's environmental setting, history and records in order to identify potentially contaminating historical activities (both on-site and off-site).
 This comprised:
 - a review of available historical aerial photographs to identify use and development of the Site and adjacent sites over time;
 - a review of Narrabri Shire Council Planning Certificates; and
 - a review of available geology and hydrogeology information for the area.
- An initial site inspection to identify potentially contaminated areas.
- Preliminary sampling and analysis of potentially contaminated areas.
- Review of laboratory documentation.
- Reporting of results and undergoing a quality assurance (QA) and quality control (QC) review.
- Identification of contaminated areas where further investigation is recommended (i.e. Stage 2 – Detailed Investigation).

The objectives of the Stage 2 – Detailed Investigation were to define the nature, extent and degree of contamination; to assess potential risk posed by contaminants to health and the environment; and to obtain sufficient information to develop a Remediation Management Plan (RMP).

The scope of work conducted for the Stage 2 – Detailed Investigation is as follows:

- Sampling and analysis of areas that were identified as contaminated during the Stage 1 – Preliminary Investigation to delineate the extent of the contamination both laterally and vertically.
- Review of laboratory documentation.
- Reporting of results and undergoing a QA and QC review.
- Preparation of a RMP for areas where management measures are required.

1.2 Methodology

The Land Contamination Assessment was undertaken in general accordance with the following guidance documents:

- Managing Land Contamination, Planning Guidelines SEPP 55 Remediation of Land (Department of Urban Affairs and Planning [DUAP]/Environmental Protection Authority [EPA], 1998).
- National Environment Protection Council Schedule B(2) Guideline on Data Collection, Sample Design and Reporting (National Environment Protection (Assessment of Site Contamination) Measure [NEPM], 1999a).

1.3 Report Structure

The report has been structured in the following way:

Section 1: outlines the Project background and the assessment scope works;

Section 2: provides a Site description;

Section 3: presents the Site history;

Section 4: details the Stage 1 – Preliminary Investigation;

Section 5: provides details of the Stage 1 soil and surface water sampling and

analysis;

Section 6: details the Stage 2 – Detailed Investigation;

Section 7: discusses quality assurance and quality control measures;

Section 8: presents the RMP for the Site;

Section 9: offers concluding comments and recommendations; and

Section 10: provides references.

The Narrabri Shire Council Planning Certificates are included in **Appendix A**, borelogs are included in **Appendix B**, Dial Before You Dig details are in **Appendix C**, historical photographs are provided in **Appendix D**, calibration certificates are provided in **Appendix E**, soil and surface water analysis results are included in **Appendix F**, laboratory documents are provided in **Appendix G**, and Relative Percent Difference (RPD) calculations are included in **Appendix H**.

2 STAGE 1 - SITE DESCRIPTION

This section provides a description of the Site. A more detailed description of the Project area (including the Site) is provided in Section 4 of the Main Report of the EA.

2.1 Site Details

The Project is located approximately 15 km north-east of Boggabri and 42 km north-northwest of Gunnedah. The Site consists of the MLA 1 and MLA 2 areas which are located on the southern and eastern extents of the Project area (Figure 2).

The MLA 1 component of the Site is bordered by Goonbri Road to the north and consists of mainly cleared agricultural land (Figure 2). The MLA 2 component of the Site is bordered by the Leard State Forest to the north and the existing Tarrawonga Coal Mine to the west. This section of the Site consists of cleared agricultural land with the exception of the vegetated north-western corner. Goonbri Road and Goonbri Creek traverse the MLA 2 area from north to south (Figure 2). Farm buildings (Bollol Creek Station) are also located in the south-eastern section of MLA 2.

The Site is located wholly within the Narrabri Local Government Area on land zoned Zone 1 (a) (General Rural) under the Narrabri Local Environment Plan. Further detail on the zoning of the Project area (including the Site) is provided in Section 6 of the Main Report of the EA.

All land within the Site is wholly owned by Whitehaven.

2.2 Land Use Activities

The dominant land use at the Site is agricultural activities including grazing and some cropping. Other land uses include farm buildings (Bollol Creek Station), public roads and vegetated areas.

Planning Certificates were obtained from the Narrabri Shire Council (**Appendix A**). The Planning Certificates indicated that the Narrabri Shire Council has no record that the land on the Site is significantly contaminated land.

2.3 Regional Geology

The Gunnedah Basin forms the central part of the Permo-Triassic Sydney-Gunnedah-Bowen Basin system which extends along the eastern margin of Australia. The Project is located in the Gunnedah Basin, which contains sedimentary rocks, including coal measures, of the Permian-Triassic age. A north-south-trending ridge of Early Permian volcanic rocks, the Boggabri Ridge, splits the Gunnedah Basin into the Maules Creek sub-basin to the east, and the Mullaley sub-basin on the western side of the Boggabri Ridge.

The Site is located towards the western side of the Maules Creek sub-basin. The Maules Creek Formation contains a multi seam coal resource which directly overlies the Boggabri Volcanics. Coal seam thickness in the area ranges from 0.3 metres (m) up to 4.5 m but generally averages 1.5 m. The coal seams generally strike in a north-south direction and dip to the east (Department of Primary Industries, 2009).

2.4 Site Geology

Forested areas in the north of the Site contained brown, humic material underlain by clay and silt. The observed Site surface in the cleared areas consisted of silt underlain by clay. Deeper layers (at approximately 1.5 m) revealed a layer of alluvial sand and river rocks (see Borelogs in **Appendix B**).

2.5 Site Topography

The topography comprises a series of rolling hills up to an elevation of approximately 370 m Australian Height Datum (AHD). MLA 1 encompasses the floodplains of Goonbri Creek and Bollol Creek to the south and east, and has elevations of between approximately 270 to 280 m AHD. These floodplains are the Central Mixed Soil Floodplain as defined in *Namoi Catchment Water Study Independent Expert Phase 2 Report* (Schlumberger Water Services, 2011). The MLA 2 component of the Site contains gently undulating land that slopes eastwards, and has elevations of between approximately 280 to 370 m AHD.

2.6 Regional Hydrogeology

Within the Project area, the coal seams have sufficient permeability to be regarded as aquifers but the groundwater within the seams is not used for consumptive use (Heritage Computing, 2011).

The Project area is bordered by alluvial sediments which are associated with the Bollol Creek, Goonbri Creek and Nagero Creek drainages. These sediments are part of the upper Namoi Alluvium and their groundwaters lie within the Namoi Valley (Keepit Dam to Gin's Leap) Groundwater Source, also known as the Upper Namoi Zone 4 water source. The Bollol Creek, Goonbri Creek and Nagero Creek embayments have alluvial thicknesses in the order of 30 m maximum (McNeilage, 2006). On the floodplain between Bollol Creek and Driggle Draggle Creek farther south, the alluvium is generally 40 to 70 m thick (Heritage Computing, 2011).

A separate assessment of potential impacts of the Project on groundwater resources (including identification of groundwater users) has been conducted and is included as part of the EA (Appendix A in the EA).

2.7 Surface Waters

The Site is situated approximately 12 km east of the Namoi River in the foothills of the Willowtree Range. Further downstream, the Namoi River flows north and west in the Barwon-Darling River system west of Walgett.

The main local drainages in the vicinity of the Project are Nagero Creek, Bollol Creek and Goonbri Creek and these creeks drain west to the Namoi River. All of these creeks are highly ephemeral, respond quickly to rainfall and flow for relatively short periods after rainfall (Gilbert & Associates, 2011).

A separate assessment of potential impacts of the Project on surface water resources (including identification of surface water users) has been conducted and is included as part of the EA (Appendix B in the EA).

2.8 Underground Utilities Search

An underground utility search, using the dial before you dig (DBYD) database, was undertaken for the Site. The DBYD search indicated that Narrabri Shire Council has no records of a water supply line located on the Site. Also, Essential Energy records indicated that there were no underground cables, pipes, earths or wires. The search indicated the presence of above ground Telstra cables. Results of the DBYD database search are included in **Appendix C**.

3 STAGE 1 - SITE HISTORY

3.1 Historical Aerial Photograph Review

Historical aerial photographs were obtained from NSW Department of Lands, copies of which are provided in **Appendix D**. Information obtained from the review of these photographs is provided in **Table 3-1**.

Table 3-1 Historical Aerial Review

Photograph	Observati	ons
Details	On-Site	Surrounding Land
Date: 22/4/1956 Run No: 3 Photo No: 317	The densely vegetated portion in the north of the Site is the Leard State Forest. The remainder of the Site is sparsely vegetated except for clumps of trees along the western side and towards the middle. A road traverses the lower part of the site in a south-west to north-easterly direction.	North: The southern edge of the Leard State Forest. South, East: Mostly cleared land with sparse vegetation. West: Areas of denser vegetation in the north west with mostly cleared land in south west.
Date: 5/6/1966 Run No: 4B Photo No: 1456	No significant change. Dam in lower northeastern corner and mid upper north eastern section. North western corner has a small creek that traverses the Site.	No significant change except for more obvious cropping activity in some areas.
Date: 22/5/1975 Run No: 3 Photo No: 2312	Similar to 1966 with no significant change evident.	North: Area to the south of the Leard State Forest (and to the north of the site) has been cleared. South, East, West: No significant changes
Date: 6/3/1986 Run No: 3 Photo No: 3491	Well defined cropping activity on southern portion of site.	North: Leard State Forest, cropping/ clearing activity South, East, West: cleared undulating land, sparse vegetation, increased cropping activity
Date: 8/2010 Geo-Spectrum Australia	Northern portion of the Site more densely vegetated. Surrounding roads more clearly defined. North western corner has a small creek that traverses the site. One dam is present to the east of the creek line, with a smaller dam forming south of the dam. The third dam is not present, however there is evidence of excavation occurring in the third dam area. A dirt road from the area leading to the Tarrawonga Coal Mine is present.	North: Mining activity within Leard State Forest South, East: Grazing or cropping activity West: Mining activity associated with the Tarrawonga Coal Mine.

4 STAGE 1 - SITE INVESTIGATIONS

4.1 On-site Observations

Lloyd Consulting senior personnel undertook inspections of the Site on 14 and 15 June 2011 and 14 July 2011. The section of the MLA 2 area west of Goonbri Road was inspected on 14 and 15 June 2011 (the other areas of the Site were not inspected during this inspection due to access problems). The other areas of the Site (i.e. MLA 1 area and the eastern section of MLA 2) were inspected during the second inspection on 14 July 2011.

The purpose of these site inspections was to confirm the Site history details and to identify potentially contaminated areas. The potentially contaminated areas identified during these site inspections are listed below (Figure 2):

- Site 1 Landfill area in drainage line.
- Site 2 Abandoned farm machinery and fuel drum.
- Site 3 Unknown structure (possibly a sheep dip area or storage shed).
- Site 4 Surface water storage dams (Dams 1, 2 and 3).
- Site 5 Bollol Creek Station landfill area in Goonbri Creek.
- Site 6 Bollol Creek Station storage sheds.
- Site 7 Bollol Creek Station above ground storage tanks.
- Site 8 Bollol Creek Station cattle spray race.
- Site 9 Surface water storage dams (Dams 4 and 5).

More detail on each of these potentially contaminated areas is provided below.

Site 1 - Landfill Area in Drainage Line

Landfilling was observed to have been occurring at a small ephemeral drainage line (Figure 2) containing a large amount of fill material (Photos 1, 2 and 3).

A number of wastes were observed including old farm machinery such as tractors, ploughs, disused bottles, half buried car batteries, wire, wire mesh, oil drums, empty chemical and fuel storage containers and general refuse. Some localised discolouration of soils (fuel oil or diesel) was also observed.

The horizontal extent of the landfilling appeared to be approximately 200 m, however as some items appeared to be half buried in the creek sediment, the vertical extent of the landfilling was unknown.

Photo 1 - Disused chemical storage containers and lead batteries in landfilling area

Photo 2 – General refuse and storage containers in landfilling area

Photo 3 - General refuse in landfilling area

<u>Site 2 – Abandoned Farm Machinery and Fuel Drum</u>

There were a number of areas containing old machinery and parts, including an abandoned tractor, as well as abandoned fuel storage containers (Photos 4 and 5). Some localised discolouration of soils (fuel oil or diesel) was observed at these locations (Photo 5).

Photo 4 – Abandoned tractor

Photo 5 – Stained ground next to fuel tank of the abandoned tractor

Site 3 – Unknown Structure

A structure which consisted of wooden poles and wire was present nearby to the ephemeral drainage line located in MLA 2 (Figure 2). It appeared that the structure may have once been an old storage shed or possible sheep dipping area (Photo 6).

Photo 6 – Wooden structure that may have once been a storage shed or sheep dipping area

<u>Site 4 – Surface Water Storage Dams</u>

The three surface water storage dams identified in the MLA 2 area (Figure 2) had varying water quality, one dam was green in colour with the other two dams brown (Photos 7 and 8).

Photo 7 – Dam 2 with green coloured water

Photo 8 – Dam 3 with brown coloured water that appeared to be turbid

Site 5 – Bollol Creek Station – Landfill Area in Goonbri Creek

Bollol Creek Station is located to the south-east of Goonbri Road (Figure 2). Landfilling was observed to have been occurring at Goonbri Creek near Bollol Creek Station (Figure 2). A number of empty 44 gallon drums and concrete were observed. No other visible sources of contamination were observed.

Site 6 – Bollol Creek Station – Storage Sheds

Bollol Creek Station contains a number of storage sheds (Figure 2). The chemical storage shed contained sealed concrete surface which appeared to be in good condition (Photo 9).

There was an unbunded engine oil storage area adjacent to the shed, where obvious spilling (engine oil) had occurred. Some localised soil discolouration had resulted adjacent to the storage sheds (Photo 10).

Photo 9 – Inside the chemical storage shed

Photo 10 - Engine oil spill area

<u>Site 7 – Bollol Creek Station – Above Ground Storage Tanks</u>

Three above ground fuel storage tanks (Figure 2) and a portable storage tank (designed to sit on the back of a ute) were identified on Site at Bollol Creek Station. The area was unbunded and the fuel was labelled as diesel and unleaded (Photos 11 and 12).

Photo 11 - Diesel storage tank on the left and unleaded storage tank on the right

Photo 12 - Diesel storage tank and a portable storage tank

Site 8 - Bollol Creek Station - Cattle Spray Race

Bollol Creek Station contained a cattle spray race (Figure 2). The cattle spray race appeared to be operational at the time of assessment and was in good condition with a metal chemical capture bund. A slight odour was detected during the inspection.

Site 9 – Surface Water Storage Dams

The two dams located in the south-western section of the Site (MLA 1) were inspected, and are located down gradient from the current Tarrawonga Coal Mine activities (Figure 2). Both dams appeared to be in good condition and the water appeared clear.

4.2 Potential Contamination

The site history review and site inspections identified nine potentially contaminated sites that required further investigation (Section 4.1). The possible sources of contamination at each of these sites are identified in **Table 4-1**.

Details of the further investigations conducted at each of these sites are provided in Section 5.

Table 4-1 Possible Sources of Contamination

Site Number	Potential Source of Contamination	Potential Contaminants
Site 1	Landfill Area in Drainage Line	Hydrocarbons (namely TPH, BTEX and PAH) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 2	Abandoned Farm Machinery and Fuel Drum	Hydrocarbons (namely TPH, BTEX and PAH) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 3	Unknown Structure	Hydrocarbons (namely TPH, BTEX and PAH), pesticides and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 4	Surface Water Storage Dams (Dams 1, 2 and 3)	Pesticides and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 5	Bollol Creek Station – Landfill Area in Goonbri Creek	Hydrocarbons (namely TPH and BTEX) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 6	Bollol Creek Station – Storage Sheds	Hydrocarbons (namely TPH and BTEX) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 7	Bollol Creek Station – Above Ground Storage Tanks	Hydrocarbons (namely TPH and BTEX) and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 8	Bollol Creek Station – Cattle Spray Race	Pesticides and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)
Site 9	Surface Water Storage Dams (Dams 4 and 5)	Pesticides and metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury)

Notes:

TPH Total Petroleum Hydrocarbon

BTEX Benzene, Toluene, Ethylbenzene and Xylene

PAH Polycyclic Aromatic Hydrocarbon

5 STAGE 1 - SOIL AND SURFACE WATER INVESTIGATIONS

5.1 Soil Investigation Program

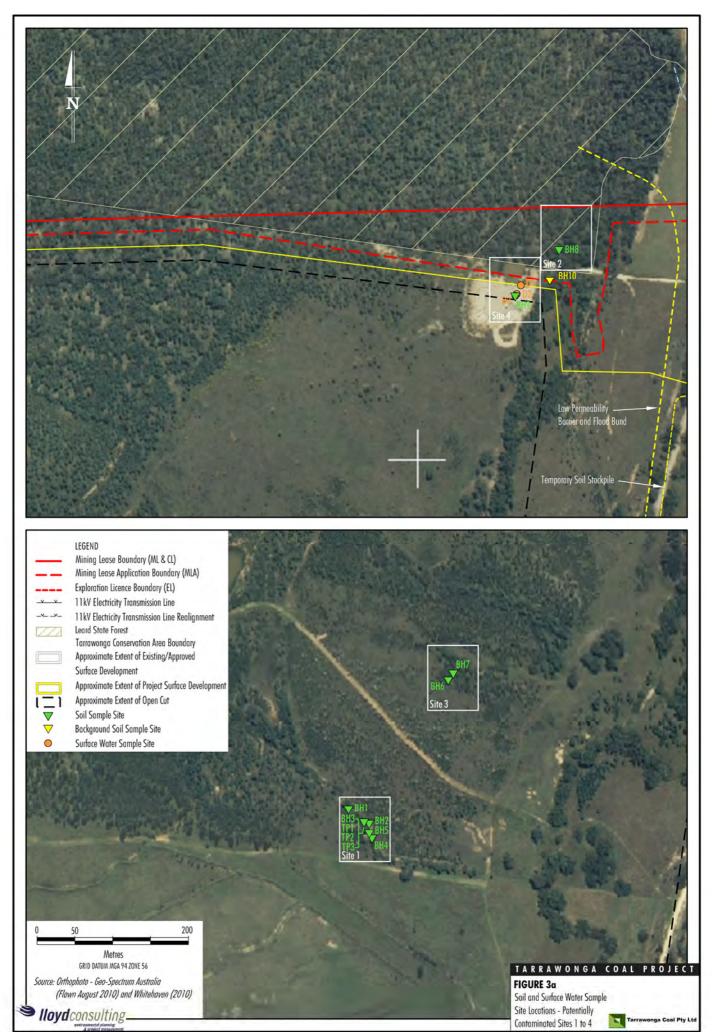
5.1.1 Sampling Program

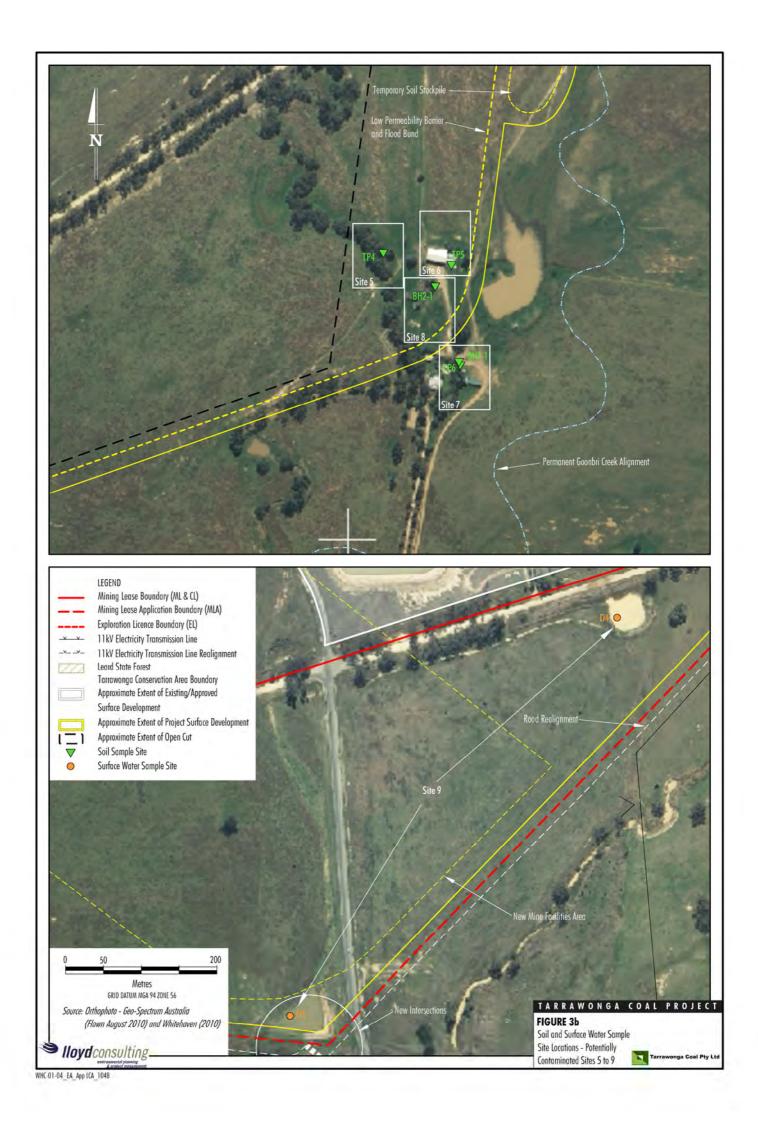
The Stage 1 – Preliminary Investigation sampling program was undertaken on 15 June 2011 and 14 July 2011. Figures 3a and 3b show the sampling locations. **Table 5-1** summarises the sampling and analysis program.

Table 5-1 Summary of Soil Sampling and Analysis Program

Site	Number of Samples Analysed	Description	Analytes ¹
Site 1 Landfill Area in Drainage Line	7 (Borehole [BH] 1 – BH5)	 Samples collected within the top 1 m of soil BH1 – located upstream from the landfilling activities. BH2 and BH3 – located at lead batteries. BH4 – located downstream of the landfilling BH5 – located at fuel storage drums. 	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) TPH/PAH/BTEX
Site 2 Abandoned Farm Machinery and Fuel Drum	1 + duplicate (BH8)	 Sample collected at surface. BH8 – collected at abandoned tractor. 	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) TPH/PAH/BTEX
Site 3 Unknown Structure	2 (BH6 and BH7)	 Samples collected at surface. BH6 and BH7 – collected at unknown structure. 	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) TPH/PAH/BTEX OC/OPs
Site 4 Surface Water Storage Dams (Dams 1, 2 and 3)	1 (BH9)	 Sample collected at surface. BH9 – collected at surface water storage dams. 	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) OC/OPs
Site 5 Bollol Creek Station – Landfill area in Goonbri Creek	1 (Test Pit [TP] 4)	Sample collected at surface.	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) TPH/BTEX

Table 5-1 Summary of Soil Sampling and Analysis Program (cont)


Site	Number of Samples Analysed	Description	Analytes
Site 6 Bollol Creek Station – Storage Sheds	1 (TP5)	 Sample collected by auger to a depth of 1 m. 	Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg)TPH/BTEX
Site 7 Bollol Creek Station – Above Ground Storage Tanks	4 (TP6 and BH1-1)	 Samples collected by auger to a depth of 1.5 m. Four of the nine samples collected were submitted for analysis. Additional bore hole (BH1-1) was completed to determine extent of contamination only. 	 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) TPH/BTEX
Site 8 Bollol Creek Station – Cattle Spray Race	1 (BH2-1)	 Samples collected at 0.2 m and 0.5 m. BH2-1 – collected at exit gate. 	 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) OC/OPs
Site 9 Surface Water Storage Dams (Dams 4 and 5)	-	-	-
Background	1 (BH10)	 Sample collected at surface with trowel. BH10 – collected in vegetated area. 	 pH (1:5 soil water) Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) OC/OPs


Notes:

OC/OPs Organochlorine Pesticides and Organophosphorous Pesticides

 $AS = Arsenic, \ Cd = Cadmium, \ Cr = Chromium, \ Cu = Copper, \ Ni = Nickel, \ Pb = Lead, \ Zn = Zinc \ and \ Hg = Mercury$

 $^{^{\}rm 1}\,{\rm Not}$ all samples were analysed for all analytes listed.

5.1.2 Sampling Procedures

Soil sampling was undertaken in accordance with the principles described in Australian Standard (AS) 4482.1-2005 *Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds* and AS 4482.2-1999 *Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances.*

Due to the Site geology, all soil samples were collected using a hand auger or stainless steel trowel.

Samples were selected from each soil investigation area for laboratory analysis such that they target the maximum impact indicated by known historical land-uses (i.e. surface soils); and attempted to achieve the inferred lateral extent of impact. Samples were collected on a judgemental basis.

Samples were collected directly from the flight of the hand auger by hand with disposable nitrile gloves. New nitrile gloves were used for each sample collected to avoid cross contamination. A solution of Decon 90 was used to decontaminate the hollow flight augers and the stainless steel trowel in between collecting each sample. All samples were stored and kept in an ice packed esky and transported to a National Association of Testing Authorities (NATA) Accredited laboratory for analysis. Duplicate samples were collected and analysed at a rate of one per twenty samples collected. Soil profiles were logged during sampling.

Upon the completion of the investigation all potentially contaminated areas were backfilled and the Site was returned to its previous condition.

Surface samples were collected from each potentially contaminated area. Samples collected at each location were submitted for laboratory analysis and included one QC duplicate sample, collected and analysed for QC purposes. In addition, one rinsate sample was collected from the sampling equipment and submitted for metals analysis only.

Determination of the analytes selected for laboratory analysis was dependent on the potentially contaminated area (judgemental) and results from the use of a Photoionisation Detector (PID). The PID measured the levels of gas contained in a sample and was used as an indicator for samples to have Total Petroleum Hydrocarbon (TPH), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) and Polycyclic Aromatic Hydrocarbon (PAH) analysis conducted. All calibration certificates for equipment used on Site are included in **Appendix E**.

5.1.3 Assessment Criteria

The proposed use for the Site is for mining and mining-related activities. The nature of the activities requires the majority of the Site to be excavated. The primary site investigation criteria is the Health-based Investigation Level for commercial/industrial land use (HIL-F) as outlined in NEPM's (1999b) *Schedule B (7a) Guideline on Health-Based Investigation Levels*. In addition, the Health-based Investigation Level for open space land use (HIL-E) will be used as the entire Site would be excavated.

Where criteria were not available in the above guidelines, the following assessment criteria were used:

- Regional Screening Levels Industrial Use (United Stated Environmental Protection Agency Region 9 [USEPA], 2011); and
- Guidelines for Assessing Service Station Sites (Office of Environment and Heritage [OEH], 2011).

Table 5-2 displays the adopted site assessment criteria for the Site.

Table 5-2 Soil Site Assessment Criteria

	Site Assessment Criteria			
Parameter	NEPM		USEPA	6 51.4
	HIL-E ¹	HIL-F ²	Industrial ³	OEH ⁴
Petroleum Hydrocarbons			_	
C ₆ -C ₉	-	-	-	65
C ₁₀ -C ₃₆	-	-	-	1,000
BTEX				
Benzene	-	-	-	1
Toluene	-	-	-	130
PAH	-	-	-	
Total PAH	40	100	-	-
Benzo(a)Pyrene	2	5	-	-
Organochlorine Pesticides (OCs)				
Aldrin + Dieldrin	20	50	-	-
Chlordane	100	250	-	-
Heptachlor	20	50	-	-
DDt + DDD +DDE	-	-	-	-
Organophosphorous Pesticides (OPs)				
Dichlorvos	-	-	5.9	-
Demeton-S-methyl	-	-	25	-

Table 5-2 Soil Site Assessment Criteria (cont)

	Site Assessment Criteria				
Parameter	N	EPM	USEPA	OEH ⁴	
	HIL-E ¹	HIL-F ²	Industrial ³	HIL-E ¹	
Dimethoate	-	-	120	-	
Diazinon	-	-	430	-	
Chlorpyrifos-methyl	-	-	6,200	-	
Malthion	-	-	12,000	-	
Chloropyrifos	-	-	1,800	-	
Parathion	-	-	3,700	-	
Pirimphos-ethyl	-	-	6,200	-	
Fenamiphos	-	-	150	-	
Ethion	-	-	310	-	
Metals					
Arsenic	200	500	-	-	
Cadmium	40	100	-	-	
Chromium (III)	24%	60%	-	-	
Chromium (VI)	200	500	-	-	
Copper	2,000	5,000	-	-	
Mercury	30	75	-	-	
Lead	600	1,500	-	-	
Nickel	600	3,000	-	-	
Zinc	14,000	35,000	-	-	

¹NEPM (1999b) HIL-E.

Note: All parameters are in milligram per kilogram (mg/kg).

5.1.4 Analysis Results

A summary of the soil samples submitted for analysis, the minimum and maximum concentrations reported and the samples that exceeded the adopted site assessment criteria are provided in **Table 5-3**. Analysis results are provided in full in **Appendix F**.

² NEPM (1999b) HIL-F.

³ USEPA (2011).

⁴ OEH (2011).

Table 5-3 Summary of Soil Analysis Results

Number of Samples Submitted	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding Site Assessment Criteria ¹
20	Arsenic	<5	7	None
20	Cadmium	<1	4	None
20	Chromium	8	26	None
20	Copper	<5	14	None
20	Lead	6	2,720	Site 1 (BH3 [0.5] & BH3 [0.2])
20	Nickel	4	15	None
20	Mercury	<0.1	0.1	None
20	Zinc	6	1,430	None
5	Total 5 Organophosphorous Pesticides		<0.2	None
5	5 Total Organochlorine Pesticides		<0.2	None
12	TPH C ₆ -C ₉	<10	<10	None
12	TPH C ₁₀ -C ₃₆	<50	1,170	Site 1 (BH3 [0.2])
14	BTEX	<0.2	<0.2	None
8	PAH	<0.5	<0.5	None

¹Refer to Table 5-2.Notes:

mg/kg = milligram per kilogram

Lead concentrations at Site 1 were detected above NEPM (1996b) HIL-E and HIL-F guidelines at the surface (BH3 [0.2]) and at depth (BH3 [0.5]). Lead batteries were observed in close proximity to BH3 (see Photo 1). The elevated concentrations of TPH at BH3 were the heavier TPH fraction (TPH $C_{10}-C_{36}$) and indicated the presence of a hydrocarbon fuel such as diesel. BTEX and PAHs were not present within samples collected at any of the sites. **Table 5-4** provides a summary of exceedances of the site assessment criteria.

Table 5-4 Summary of Soil Site Assessment Criteria Exceedances

Analyte	Site Assessment Criteria (mg/kg)	Location	Sample	Concentration (mg/kg)
Lead	600 ¹	Site 1	BH3 (0.5)	2,720
	1,500 ²		BH3 (0.2)	1,500
TPH C ₁₀ -C ₃₆	1,000 ³		BH3 (0.2)	1,170

¹NEPM (1999b) HIL-E.

5.2 Surface Water Investigation Program

5.2.1 Sampling Program

The Stage 1 – Preliminary Investigation sampling program was undertaken on the 14 and 15 June 2011 and 14 July 2011. Samples were taken at Sites 4 and 9 (Figures 3a and 3b).

Table 5-5 summarises the sampling and analysis program.

5.2.2 Sampling Procedures

Samples were collected in accordance with AS/NZS 5667.4-1998: Water quality - Sampling Part 4: Guidance on sampling from lakes, natural and man-made. All samples were collected from the surface by placing a sample collection bottle upside down into the water body and rotating the bottle at approximately 0.2 m below the surface to collect the water sample. All sampling equipment was disposable so no decontamination procedures were necessary.

² NEPM (1999b) HIL-F.

³ OEH (2011).

Table 5-5 Summary of Surface Water Sampling and Analysis Program

Site	Number of Samples Analysed	Description	Analytes
Site 4 Surface Water Storage Dams (Dams 1, 2 and 3)	3 (D1 – D3)	 D1 – collected from Dam 1. D2 – collected from Dam 2. D3 – collected from Dam 3. 	 pH EC DO TDS Total Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) OC/OPs (D2 only)
Site 9 Surface Water Storage Dams (Dams 4 and 5)	2 + duplicate at D4 (D4 – D5)	 D4 – collected from Dam 4. D5 – collected from Dam 5. 	 pH EC DO TDS Alkalinity Chloride, Sulfate and Major Cations (Ca, Mg, Na, K) Filtered metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg) Nitrite and Nitrate Total Nitrogen OC/OPs

Notes:

EC Electrical Conductivity
DO Dissolved Oxygen
TDS Total Dissolved Solids

Ca = Calcium, Mg = Magnesium, Na = Sodium, K = Potassium

5.2.3 Assessment Criteria

The adopted site assessment criteria for surface waters is the Australian and New Zealand *Guidelines for Fresh and Marine Water Quality Ecosystems Fresh Water (90% protection level)* (Australian and New Zealand Environment and Conservation Council [ANZECC] and Agriculture and Resource Management Council of Australia and New Zealand [ARMCANZ],2000) and is summarised in **Table 5-6**. These guidelines provide trigger values for protection of species in both fresh and marine waters.

Table 5-6 Surface Water Site Assessment Criteria

Analytes	Site Assessment Criteria (mg/L)		
	ANZECC and ARMCANZ (Freshwater 90% Protection) ¹		
Metals			
Arsenic (V)	0.042		
Cadmium	0.0004		
Chromium (VI)	0.006		
Copper	0.0018		
Mercury	0.0019		
Lead	0.0056		
Nickel	0.013		
Zinc	0.015		
Organochlorine Pesticides (OCs)			
Aldrin	-		
Chlordane	0.00014		
DDE	-		
DDT	0.00002		
Dicofol	-		
Dieldrin	-		
Endosulfan	0.0006		

¹ ANZECC and ARMCANZ (2000) Ecosystems Fresh Water (90% protection level).

Note:

mg/L = milligrams per litre

5.2.4 Analysis Results

A summary of the water samples submitted for analysis, the minimum and maximum concentrations reported and the samples that exceeded the adopted site assessment criteria are provided in **Table 5-7**. Analysis results are provided in full in **Appendix F**.

Table 5-7 Summary of Surface Water Analysis Results

Number of samples submitted	Analyte	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	Samples exceeding Site Assessment Criteria ¹
3	Arsenic	0.002	0.010	None
3	Filtered Arsenic	<0.001	0.001	None
3	Cadmium	<0.0001	<0.0001	None
3	Filtered Cadmium	<0.0001	<0.0001	None
3	Chromium	0.004	0.016	Site 4 (D2, D3)
3	Filtered Chromium	<0.001	0.001	None
3	Copper	0.006	0.009	Site 4 (D1, D2, D3)
3	Filtered Copper	0.002	0.003	Site 9 (D4, D5)
3	Lead	0.004	0.012	Site 3 (D2, D3)
3	Filtered Lead	<0.001	<0.001	None
3	Mercury	<0.0001	<0.0001	None
3	Filtered Mercury	<0.0001	<0.0001	None
3	Nickel	0.005	0.018	Site 4 (D3)
3	Filtered Nickel	0.002	0.003	None
3	Zinc	0.012	0.035	Site 4 (D2, D3)
3	Filtered Zinc	<0.005	<0.005	None
3	Organophosphorous Pesticides	<0.5	<2	None
3	Organochlorine Pesticides	<0.5	<2	None
5	Total Nitrogen	1.1	4.7	None
5	NitrIte & Nitrate	0.27	0.46	None
5	Total Kjeldahl Nitrogen	0.8	4.6	None

¹Refer to Table 5-6.

Concentrations of total chromium, total copper, total lead, total nickel, total zinc and filtered copper were detected above the site assessment criteria. Total copper exceeded the site assessment criteria in samples from all dams. **Table 5-8** provides a summary of exceedances.

Table 5-8 Summary of Surface Water Site Assessment Criteria Exceedances

Analyte	Site Assessment Criteria (mg/L) ¹	Location	Sample	Concentration (mg/L)
Chromium	0.006	Site 4	D2	0.007
Chromium	0.006	Site 4	D3	0.016
			D1	0.006
Copper	0.0018	Site 4	D2	0.006
			D3	0.009
Filhamad Caman	0.0040	C:t- 0	D4	0.003
Filtered Copper	0.0018	Site 9	D5	0.002
	0.0056	611 4	D2	0.006
Lead	0.0056	Site 4	D3	0.012
Nickel	0.013	Site 4	D3	0.018
	0.015	Cit - A	D2	0.021
Zinc	nc 0.015 Site 4	D3	0.035	

¹Refer to Table 5-6.

6 STAGE 2 – DETAILED INVESTIGATION

The objective of the Stage 2 – Detailed Investigation is to delineate laterally and vertically the extent of contamination identified during the Stage 1 – Preliminary Investigation (Sections 4 and 5) and develop a RMP for the Site.

6.1 Summary of Identified Site Contamination

The following areas of contamination were identified during the Stage 1 – Preliminary Investigation:

- Site 1 (Landfill in Drainage Line) elevated levels of lead and TPH C₁₀ C₂₈.
- Site 4 (Surface Water Storage Dams) elevated levels of heavy metals.
- Site 9 (Surface Water Storage Dams) elevated levels of filtered copper.

Additional investigations were conducted to delineate laterally and vertically the extent of contamination at Site 1 and to identify potential sources of contamination at Sites 4 and 9.

6.2 Soil Fieldworks Program

6.2.1 Sampling Program

The Stage 2 - Detailed Investigation was undertaken on the 14 July 2011. Figures 3a and 3b show the soil sampling locations.

BH3 at Site 1 identified as containing elevated lead and TPH $C_{10}-C_{28}$ was excavated to a maximum depth of 2 m and width of 2 m in order to delineate the lateral and vertical extent of contamination. A total of eleven samples were collected from the impacted area with three samples (TP1 to TP3) and one duplicate submitted for laboratory analysis.

6.2.2 Sampling Procedures

The sampling procedures outlined in Section 5.2.2 were used again for the Stage 2 – Detailed Investigation.

6.2.3 Laboratory Analysis

All soil samples analysed displayed results below the site assessment criteria. All samples analysed for TPH fractions displayed non-detects. **Table 6-1** summarises the results. Analysis results are provided in full in **Appendix F**.

Based on these results, the contamination identified during the Stage 1 – Preliminary Investigation is confined within 2 m of the BH3.

Table 6-1 Summary of Stage 2 Soil Analysis Results

Number of Samples Submitted	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding Site Assessment Criteria ¹
4	Arsenic	<5	5	None
4	Cadmium	<1	<1	None
4	Chromium	8	10	None
4	Copper	<5	6	None
4	Lead	11	74	None
4	Nickel	5	6	None
4	Mercury	<0.1	<0.1	None
4	Zinc	18	104	None
4	TPH C ₆ -C ₉	<10	<10	None
4	TPH C ₁₀ -C ₃₆	<50	<50	None
4	ВТЕХ	<0.2	<0.5	None

¹Refer to Table 5-2.

6.3 Surface Water Fieldworks Program

6.3.1 Sampling Program

The Stage 1 – Preliminary Investigation sampling program was undertaken on the 14 and 15 June 2011 and 14 July 2011. Samples were taken at Sites 4 and 9 (Figures 3a and 3b). **Table 5-5** summarises the sampling and analysis program.

The Stage 2 – Detailed Investigation sampling program was undertaken on the 14 July 2011. Samples were taken at Site 4 (Figure 3a). The sampling program comprised:

- In-situ water monitoring at Dams 1, 2 and 3 for DO, EC, pH, and TDS.
- One sample was collected from Dams 1, 2 and 3 and analysed for filtered metals¹, major cations and anions, and total nitrogen.
- One duplicate sample was collected for QC purposes.

6.3.2 Sampling Procedures

Samples were collected in accordance with AS/NZS 5667:4-1998: *Water quality – Sampling Part 4: Guidance on sampling from lakes, natural and man-made.* All samples were collected from the surface by placing a sample collection bottle upside down into the water body and rotating the bottle at approximately 0.2 m below the surface to collect the water sample.

Surface water samples were collected on 14 July 2011 from Site 4 using Disposable Millipore Filters and a hand pump. All of the three surface water samples were submitted to a NATA accredited laboratory and analysed for filtered metals. Field parameters were recorded using a TPS 90 FLMV water quality meter. All calibration certificates for equipment used on site are included in **Appendix E**.

All sampling equipment was disposable so no decontamination procedures were necessary.

The initial screening analysis of water samples for Dams 1, 2 and 3 were undertaken on unfiltered samples and this indicated elevated levels of metals, therefore sampling and analysis on filtered samples was conducted in Stage 2.

6.3.3 In-situ Water Monitoring

The results from the surface water *in-situ* sampling are displayed in **Table 6-2**.

Table 6-2 In-situ Surface Water Monitoring Results

Sample	рН	Electrical Conductivity @ 25°C (μS/cm)	Total Dissolved Solids (ppm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Observations
D1	6.49	114.7	62.3	4.20	9.3	Colloidal, green slime on edge
D2	7.69	189.7	105.7	9.12	10.4	Green colloidal
D3	7.04	359.0	200.0	8.35	9.5	Colloidal, dark, browner than previous visit

Notes:

μS/cm microSiemens per centimetre

ppm parts per million

The pH of the surface water samples ranged from 6.49 to 7.69 and EC ranged from 114.7 to 359.0 μ S/cm. Dissolved oxygen levels in all surface water storage dams were acceptable.

6.3.4 Laboratory Analysis

A summary of the surface water samples submitted for analysis, the minimum and maximum concentrations reported and the samples that exceeded the adopted site assessment criteria are provided in **Table 6-3.** Analysis results are provided in full in **Appendix F**.

Following sampling and analysis of the surface water, the three dams (D1, D2 and D3) displayed exceedances of the site assessment criteria (**Table 6-4**) for filtered cadmium and copper. The cadmium exceedance is equal to the site assessment criteria. The source of the contamination in these surface water samples is unknown as there were no obvious sources of contamination observed nearby the surface water storage dams. It should be noted that the recorded concentrations were below the ANZECC and ARMCANZ (2000) stock watering guidelines.

Table 6-3 Summary of Stage 2 Surface Water Analysis Results

Number of samples submitted	Analyte	Minimum Concentration (mg/L)	Maximum Concentration (mg/L)	Samples exceeding criteria
3	Filtered Arsenic	0.001	0.008	None
3	Filtered Cadmium	<0.0001	0.0004	Site 4 (D3)
3	Filtered Chromium	<0.001	0.001	None
3	Filtered Copper	0.003	0.005	Site 4 (D1, D2, D3)
3	Filtered Lead	<0.001	<0.001	None
3	Filtered Nickel	0.002	0.003	None
3	Filtered Zinc	<0.005	0.008	None

Table 6-4 Summary of Surface Water Site Assessment Criteria Exceedances

Analyte	Site Assessment Criteria ¹	Location	Sample	Concentration mg/L
Filtered Cadmium	0.0004	Site 4	D3	0.0004
Filtered Copper	0.0018	Site 4	D1	0.004
			D3	0.003

¹ Refer to Table 4-6.

QUALITY ASSURANCE AND QUALITY CONTROL

7.1 Data Quality Objectives

The data quality objectives of the investigation were to obtain sufficient data to allow a high quality environmental assessment to be made of:

- The likelihood of impacted soil quality at the Site;
- The risks posed to the environment;
- The adequacy and completeness of all information available to be used in making decisions on remediation; and
- The requirements for any further investigative works.

The evaluation criteria adopted by the investigation are summarised below in **Table 7-1**.

Table 7-1 Evaluation Criteria

Protocol	Description
Documentation completeness	Completion of field calibration records, chain of custody documentation, laboratory test certificates from NATA accredited laboratories.
Data completeness	Targeted sampling in accordance with NSW DUAP/EPA's (1998) Managing Land Contamination, Planning Guidelines SEPP 55 Remediation of Land for potential contaminants of concern at all areas of environmental concern.
Data comparability	Use of appropriate techniques for the sampling, storage and transportation of samples.
	Use of NATA certified laboratory using NEPM procedures.
Data representation	Good sampling coverage of main areas of environmental concern at the site, and selection of representative samples.
Precision and accuracy for sampling and analysis	Use properly trained and qualified field personnel. Blind field duplicates to be collected at a minimum rate of 1 in 20. RPD's to be less than 30% for inorganic and 50% for organic analyses.
	Achieve laboratory QC criteria.

7.2 Field Quality Assurance and Quality Control

The QA and QC protocols used during the fieldwork for the assessment are shown in **Table 7-2.**

Table 7-2 QA/QC Protocols

Protocol	Description
Sampling team	Site personnel will comprise of professionally qualified environmental scientists and engineers trained in conducting site contamination investigations.
QA/QC system	All fieldwork will be conducted in accordance with an approved Lloyd Consulting Field Work Plan.
Chain of Custody forms	All samples will be logged and transferred under appropriately completed Chain of Custody Forms.
Preservation	All samples will be sent to and received at the laboratory in appropriately preserved containers, with preservation including packing samples with ice packs in eskies.
Blind Field Duplicates	Blind field duplicates will be prepared in accordance with procedures given in Section 8 of AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds. The frequency of duplicate testing will be at least 20% for all soil samples.
	Blind duplicates are split field samples, which are both sent to the laboratory for individual analyses. The accepted RPD for non-volatiles is 30% and 50% for volatiles. These samples are analysed to assess the field methods.

7.3 Laboratory Quality Assurance and Quality Control

Soil and water samples collected from the Site were sent to the ALS Laboratory in Sydney which was NATA accredited for the specified analysis. The data validation process and overall QA/QC procedures used to assess the effectiveness of the overall analytical process and to assess the use of data is outlined in **Table 7-3**.

Table 7-3 Laboratory QA/QC

Protocol	Description
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis.
Reagent Blanks	The reagent blank sample is a laboratory prepared sample containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criteria are no detectable contamination in the reagents.
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These subsamples are selected by the laboratory to assess the accuracy and precision of the analytical method.
	ALS Laboratories undertakes QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. The QC criteria are 50% RPD.
Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	MS/MSDs are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.

7.3.1 Laboratory and Field Duplicates

Precision is a measure of the ability to reproduce results, and is assessed on the basis of agreement between a set of replicate results obtained from duplicate analyses. The precision of a set of duplicates can be measured as RPD, and is calculated from the following equation:

$$RPD = \left[\frac{X1 - X2}{\left(\frac{X1 + X2}{2} \right)} \right] \times 100 \qquad \text{where: X1 is the first duplicate value}$$

X2 is the second duplicate value

7.4 Data Quality Objective Completion

A summary of the Data Quality Objectives are provided in **Table 7-4**.

Table 7-4 Data Quality Objectives Completion

Data Quality Objectives	Description	Achieved
Documentation Completeness	ALS QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes are included in Appendix G .	✓
	All necessary documentation has been provided by the laboratory following analysis including Chain of Custody forms, Certificate of Analysis, and QC Report(s) and included within Appendix G .	
Data Completeness	Targeted sampling was undertaken within those areas of concern at the site in accordance with the relevant NSW DUAP/EPA's (1998) Managing Land Contamination, Planning Guidelines SEPP 55 – Remediation of Land for potential contaminants of concern.	√
Data Comparability	All sampling was undertaken in accordance with the NSW DUAP/EPA's (1998) Managing Land Contamination, Planning Guidelines SEPP 55 – Remediation of Land. Samples were stored in an Esky packed with ice, transported to the laboratory and extracted/analysed within the necessary holding times.	(refer Section 7.5)
	ALS is a NATA certified laboratory using NEPM procedures (Schedule B(3)).	
Data Representativeness	Appropriate sampling coverage at the site undertaken. Representative samples were also collected.	√
Precision and accuracy for sampling and analysis	Properly trained and qualified field personnel were used to undertake the Land Contamination Assessment. Blind field duplicates were collected at a minimum rate of 1 per 20 samples. RPD's to be less than 30% for inorganic and 50% for organic analyses. (RPD Calculations table is available in Appendix H)	x (refer Section 7.5)
	Achieve laboratory QC criteria.	

7.5 Discussion of Data Quality Objective Completion

7.5.1 Laboratory Documentation

All soil samples were received and analysed within laboratory holding times. All surface water samples apart from DO and pH in all three samples were received within laboratory holding times. The DO and pH results will not be discussed in this report and are indicative of environmental conditions only and are not to be relied upon.

Surrogate recovery limits for copper and chromium were greater than the upper control limits, therefore the copper and chromium results reported in the laboratory documentation may be an overestimate. All other laboratory data quality objectives were met.

7.5.2 Rinsate Sample

The rinsate sample collected during the soil investigations on the 14 June 2011 identified copper within the rinsate sample (0.001 mg/L). This result would indicate that there may have been some cross contamination of copper during soil sample collection. As all soil samples collected had copper results below the adopted criteria, the copper result from this rinsate sample is unlikely to affect the results in the report.

7.5.3 RPDs

As part of the Stage 1 – Preliminary Investigation there were three exceedances of the RPD criteria. Copper had the highest RPD of 200%, however due to the low levels of copper identified in the sample, the results are considered to be suitable for reporting purposes. TPH fractions C_{15} - C_{28} and C_{10} - C_{36} RPD results were equal to the criteria (50% for organics) with the differences in results more than likely due to either the heterogeneity of the soil or volatilisation of the sample in the laboratory.

As part of the Stage 2 – Detailed Investigation there were two exceedances of the RPD criteria (zinc and lead), however due to the heterogeneity of the soil at the Site, the results are considered to be suitable for reporting purposes.

There were no exceedances of the RPD criteria for surface waters.

RPD results can be viewed in Appendix H.

8 REMEDIATION MANAGEMENT PLAN

8.1 Objectives

There are three objectives of the RMP:

- 1) To provide a remediation strategy for the Site that ensures remediation works are conducted in a manner that protects human health and the environment.
- 2) To ensure that, once remediated, the Site is suitable for its intended end use (i.e. that is the Project).
- 3) To ensure ongoing protection of human health and the environment post remediation.

The objectives of the RMP would be achieved by removing soils and refuse from landfilling to a licensed landfill facility and ensuring surface water from the surface water storage areas are appropriately disposed of.

8.2 Identified Areas of Contamination

The following areas were identified as potentially contaminated:

- Site 1 (Landfill Area in Drainage Line) elevated levels of lead and TPH C₁₀ C₂₈ and other landfill material. The Stage 2 Detailed Investigations determined that the lead and hydrocarbon contamination was restricted to an area of approximately 4 square metres (m²) to 2 m deep. General refuse was observed along approximately 200 m length of the drainage line.
- Site 2 (Abandoned Farm Machinery and Fuel Drum) surface staining where abandoned tractor was located. Although no exceedances of the site assessment criteria were recorded, it is recommended that the area containing soil discolouration be remediated.
- Site 4 (Surface Water Storage Dams) elevated levels of heavy metals. Filtered copper and cadmium concentrations recorded above the site assessment criteria.
- Site 6 (Bollol Creek Station Storage Sheds) surface staining in engine oil storage area. Although no exceedances of the site assessment criteria were recorded, it is recommended that the area containing surface staining be remediated.

8.3 Environmental Guidelines

Relevant environmental guidelines to the RMP include:

- Guidelines issued under Schedule B of the NEPM (1999);
- AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds;
- AS 4482.2-1999 Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances;
- Guidelines for Assessing Service Station Sites (OEH, 2011); and
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Ecosystems Fresh Water (90% protection level) (ANZECC and ARMCANZ, 2000).

8.4 Site Contamination Remediation Strategies

The Site would require removal of solid waste for recycling/landfill disposal as well as excavation and landfill disposal of contaminated (lead) soil with validation of remaining soil (**Table 8-1**). Surface waters located in the surface water storage dams (Dams 1, 2 and 3) are to be managed in a way to minimise impact to the environment.

Table 8-1 Remediation Strategy

Site Area	Contaminant Source and Type	<i>In situ</i> Volume (m³)	Remediation Method	Control Measures
Site 1 (Landfill Area in Drainage Line)	Lead and TPH	8	Excavate to a depth of 2 m in a 2 m² grid. Validate underlying soils	General control measures (dust suppression, Site Safety Plan, Sediment Control Plan, etc.) Soils removed to be placed immediately into trucks prior to transport to an appropriately licensed landfill (no stockpiling at the Project)
Site 1 (Landfill Area in Drainage Line)	Various refuse including lead batteries, oil containers, fuel containers, wire, concrete, etc.	~ 1,000	Separate items into general refuse and other items as per landfill requirements Validate underlying soils (if required)	General control measures (dust suppression, Site Safety Plan, Sediment Control Plan, etc.) Supervision by suitably qualified person of removal of refuse to ensure any unexpected contamination can be controlled.

Table 8-1 Remediation Strategy (cont)

Site Area	Contaminant Source and Type	In situ volume (m³)	Remediation Method	Control Measures
Site 2 (Abandoned farm machinery and fuel drum)	ТРН	0.5	Excavate to 0.5 m in a 1 m ² grid Validate underlying soils	General control measures (dust suppression, Site Safety Plan, Sediment Control Plan, etc.) Soils removed to be placed immediately into trucks prior to transport to an appropriately licensed landfill
Site 4 (Surface Water Storage Dams)	Copper and Cadmium	Unknown	Water can be used for dust suppressants at the Project or disposed of at a licensed facility.	(no stockpiling at the Project) Water from surface water storage dams used for dust suppressants must be done so in a way to avoid runoff to any nearby waterways.
Site 6 (Bollol Creek Station - Storage Sheds)	TPH	1	Excavate to 0.5 m in a 2 m ² grid Validate underlying soils	General control measures (dust suppression, Site Safety Plan, Sediment Control Plan, etc.) Soils removed to be placed immediately into trucks prior to transport to an appropriately licensed landfill (no stockpiling at the Project)

Notes:

m³ cubic metres

8.5 Remediation Criteria

The Site Acceptance Criteria adopted for validation of the soils at the Site is listed in **Table 8-2.** The Site Acceptance Criteria have been selected considering the HIL-F (NEPM, 1996).

HIL-F are the NEPM guideline levels for commercial and industrial settings with limited exposure of the land user to the soil surface. The HIL-F exposure setting has been applied in view of the future use of the Site being the Project.

Table 8-2 Site Acceptance Criteria

Analyte	Site Acceptance Criteria (mg/kg)
C ₆ -C ₉	65
C ₁₀ -C ₃₆	1,000
Arsenic	500
Cadmium	100
Chromium (III)	60%
Chromium (VI)	500
Copper	5,000
Mercury	75
Lead	1,500
Nickel	3,000
Zinc	35,000

8.6 Remediation Program

All disposal and remediation operations must be supervised by a suitably qualified and experienced person.

A summary of responsibilities on Site for the suitably qualified person are:

- Implementation and maintenance of the RMP, including on Site monitoring of remediation activities, auditing contractor compliance with the RMP and associated documentation;
- Supervision including marking out of areas identified as requiring remediation in the RMP;
- Maintenance of a Materials Tracking Register, including audits of the Civil Contractor's soil tracking system; and
- Inspection and validation sampling of excavated surfaces and characterisation sampling of stockpiles (if required).

8.6.1 General Environmental Controls

Throughout the remediation of the Site control measures would be maintained. Specific control measures to be in place are to include:

- Environmental induction for all Site staff; and
- An implementation strategy will be required to control emissions to air (including dust); water quality; noise; pests; erosion and sediment controls; emergency planning and response; and occupational health and safety.

8.6.2 Offsite Disposal of Contaminated Soils

Remediation of the Site would require movement of soil off-site for disposal. All soils requiring disposal are to be placed immediately into trucks and not stockpiled at the Site. It is anticipated that the soils would be disposed of at an appropriately licensed landfill and would require a soil disposal permit. A Material Tracking Register will be maintained by the Civil Contractor to track all soil material removed from the Site.

8.6.3 Unexpected Contamination

In the event that unexpected contamination is uncovered during remediation, work in that area would cease immediately and the area made safe. The unexpected contamination would be assessed by a suitably qualified person and remediation strategies put in place to manage this contamination if necessary after approval by the appropriate authority.

8.6.4 Validation Sampling

Validation sampling for soil at the Site (when necessary) will be as per **Table 8-1**. Assessment data will assist in the validation of the soils at the Site.

8.6.5 Quality Assurance / Quality Control

A field QA/QC program would be conducted in accordance with the NEPM guidelines to measure the precision of the field/laboratory analyses and to determine the accuracy of the primary laboratory's analyses.

Duplicate soil samples would be collected and analysed by the primary laboratory at a minimum rate of 1 per 20 primary samples.

All analysis would be conducted by a NATA accredited laboratory.

8.7 Health and Safety

All works would be conducted in accordance with a Whitehaven Health and Safety System. All contractors would be inducted and made aware of the system and any other requirements prior to commencement of any activities on Site.

8.8 Reporting Requirements

Within 60 days of the completion of all remediation and validation works, a report detailing works for the Site must be prepared.

The report would include but not be limited to the documentation of the remediation works and validation program activities and an evaluation of the results against the remediation criteria and would include the results of any further excavation and/or validation.

The report would also include the results of the QA/QC program, Chain of Custody documentation and Sample Receipt Advices for all samples collected and copies of documentation validating the appropriate handling, disposal and treatment of any contaminated soil, materials and water.

9 CONCLUSIONS AND RECOMMENDATIONS

The Project is located approximately 15 km north-east of Boggabri and 42 km north-northwest of Gunnedah. The Site consists of the MLA 1 and MLA 2 areas which are located on the southern and eastern extents of the Project area (Figure 2).

The MLA 1 component of the Site is bordered by Goonbri Road to the north and consists of mainly cleared agricultural land (Figure 2). The MLA 2 component of the Site is bordered by the Leard State Forest to the north and the existing Tarrawonga Coal Mine to the west. This section of the Site consists of cleared agricultural land with the exception of the vegetated north-western corner. Goonbri Road and Goonbri Creek traverse the MLA 2 area from north to south (Figure 2). Farm buildings (Bollol Creek Station) are also located in the this section of the Site.

A Stage 1 – Preliminary Investigation and Stage 2 – Detailed Investigation have been undertaken for the Site. The results of site history review and site inspections (14 and 15 June and 14 July 2011) identified the following potentially contaminated areas at the Site:

- Site 1 (Landfill Area in Drainage Line) elevated levels of lead and TPH C_{10} C_{28} and other landfill material. The Stage 2 Detailed Investigation determined that the lead and hydrocarbon contamination was restricted to an area of approximately 4 m² to 2 m deep. General refuse was observed along approximately 200 m length of the drainage line.
- Site 2 (Abandoned Farm Machinery and Fuel Drum) surface staining where abandoned tractor was located. Although no exceedances of the site assessment criteria were recorded, it is recommended that the area containing soil discolouration be remediated.
- Site 4 (Surface Water Storage Dams) elevated levels of heavy metals. Filtered copper and cadmium concentrations recorded above the site assessment criteria.
- Site 6 (Bollol Creek Station Storage Sheds) surface staining in engine oil storage area. Although no exceedances of the site assessment criteria were recorded, it is recommended that the area containing surface staining be remediated.

There were three exceedances of the site assessment criteria for the soils analysed (lead 2,720 mg/kg, 1,500 mg/kg and TPH C_{10} - C_{36} 1,170 mg/kg). These were located within the surface material located at Site 1 where landfilling had been identified (BH1 and BH3). Subsequent sampling within the area as part of the Stage 2 – Detailed Investigation delineated the contamination laterally and vertically, with the contamination being observed to be present within the surface material only.

There were a number of exceedances of the surface water in three of the surface water storage dams sampled (D1, D2 and D3). Results from the Stage 2 – Detailed Investigation surface water investigations indicated that filtered concentrations were below the site assessment criteria accept for copper and cadmium. There was a minor exceedance for filtered cadmium and filtered copper levels exceeded the site assessment criteria at all the dams.

A RMP has been developed based on the results of the Site assessment works (Section 8).

On the basis of the above, and with the implementation of the proposed management measures (Section 8), it is considered that the Site is suitable for the land use change to the development of the Project.

10 REFERENCES

Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (2000) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*.

Department of Urban Affairs and Planning/Environment Protection Authority (1998) Managing Land Contamination, Planning Guidelines SEPP 55 – Remediation of Land.

Department of Primary Industries (2009) *Gunnedah Coalfield (North) Regional Geology (Map)*.

Gilbert & Associates Pty Ltd (2011) *Tarrawonga Coal Project Surface Water Assessment*.

Heritage Computing (2011) Tarrawonga Coal Project Groundwater Assessment.

McNeilage, C (2006) *Upper Namoi Groundwater Flow Model: Model Development and Calibration*. NSW Department of Natural Resources, draft report.

Office of Environment and Heritage (2011) *Guidelines for Assessing Service Station Sites.*

National Environment Protection (Assessment of Site Contamination) Measure (1999a) Schedule B(2) – Guideline on Data Collection, Sample Design and Reporting.

National Environment Protection (Assessment of Site Contamination) Measure (1999b) Schedule B (7a) Guideline on Health – Based Investigation Levels.

Schlumberger Water Services (2011) Namoi Catchment Water Study Independent Expert Phase 2 Report.

United States Environmental Protection Agency Region 9 (2011) *Regional Screening Levels – Industrial Use.*

APPENDIX A

S149 PLANNING CERTIFICATES

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 24 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 467/2011

Description of Land

375 Goonbri Road, Boggabri Lot 1 DP 970060

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 467/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 467/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 467/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 467/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 467/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 467/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 467/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 25 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 468/2011

Description of Land

469 Goonbri Road, Boggabri Lot 6 DP 754940

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 468/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 468/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 468/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 468/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 468/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 Directions under Part 3A

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 468/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 468/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 26 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 469/2011

Description of Land

375 Goonbri Road, Boggabri Lot 11 DP 754940

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 469/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 469/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 469/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 469/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

Some of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 469/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 469/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 469/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 27 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 470/2011

Description of Land

375 Goonbri Road, Boggabri Lot 15 DP 754940

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 470/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 470/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 470/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 Mine subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 470/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 470/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 Directions under Part 3A

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 <u>Site compatibility certificates for infrastructure</u>

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 470/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 470/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 28 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 471/2011

Description of Land

469 Goonbri Road, Boggabri Lot 16 DP 754940

Assessment Number: 01873-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 471/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 471/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 471/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 471/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

All of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 471/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 <u>Site compatibility certificates for infrastructure</u>

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 471/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 471/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 29 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 472/2011

Description of Land

469 Goonbri Road, Boggabri Lot 26 DP 754940

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 472/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 472/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone,

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 472/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 472/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 472/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 472/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 472/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 30 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 473/2011

Description of Land

469 Goonbri Road, Boggabri Lot 29 DP 754940

Assessment Number: 01870-00000000-000

Owner

Whitehaven Coal Mining Limited

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 473/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 473/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 473/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 473/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

Some of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 473/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 473/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 473/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 31 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 474/2011

Description of Land

5740 Rangari Road, Boggabri Lot A DP 367991

Assessment Number: 00331-00000000-000

Owner

David James Wellwood

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 474/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 474/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 474/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 474/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 474/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 474/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 474/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 32 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 475/2011

Description of Land

6046 Rangari Road, Boggabri Lot 3 DP 1131282

Assessment Number: 00339-00000000-000

Owner

Robert Peter McGregor and Rhonda Daphne McGregor

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 475/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 475/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 475/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 475/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 475/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 Directions under Part 3A

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 475/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 475/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 33 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 476/2011

Description of Land

6046 Rangari Road, Boggabri Lot 5 DP 1131282

Assessment Number: 00339-00000000-000

Owner

Robert Peter McGregor and Rhonda Daphne McGregor

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 476/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 476/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 476/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 476/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 476/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 <u>Site compatibility certificates for infrastructure</u>

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 476/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 476/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 34 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 477/2011

Description of Land

386 Leards Forest Road, Boggabri

Lot 83 DP 754953

Assessment Number: 01873-00000000-000

Owner

Boggabri Coal Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 477/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 477/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 477/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 477/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

All of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 477/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 477/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 477/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)
Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 35 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 478/2011

Description of Land

103 Dripping Rock Road, Boggabri Lot 80 DP 754953

Assessment Number: 03059-30000000-000

Owner

Whitehaven Coal Mining Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 478/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 478/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 478/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 478/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

Some of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 478/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 Site compatibility certificates and conditions for seniors housing

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 478/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 478/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 36 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 479/2011

Description of Land

94 Dripping Rock Road, Boggabri Lot 18 DP 754953

Assessment Number: 03055-20000000-000

Owner

Whitehaven Coal Mining Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 479/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 479/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone,

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 479/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 479/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 479/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 479/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued.

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 479/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)
Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 37 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 480/2011

Description of Land

1006 Goonbri Road, Boggabri Lot 88 DP 754953

Assessment Number: 00956-11010000-000

Owner

Whitehaven Coal Mining Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 480/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 480/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 480/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 480/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

Some of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 480/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 480/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 480/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)

Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 38 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 481/2011

Description of Land

103 Dripping Rock Road, Boggabri Lot 69 DP 754953

Assessment Number: 03059-30000000-000

Owner

Whitehaven Coal Mining Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 481/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 481/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 481/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

No

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

• Bushfire Prone Land

4 <u>Coastal protection</u>

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 481/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

Some of the subject land is identified as being bushfire prone land.

12 **Property vegetation plans**

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 481/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 481/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 481/2011 Page 7 of 7

PO Box 261 NARRABRI NSW 2390

Telephone: 02 67996866 Facsimile: 02 67996888 Email: council@narrabri.nsw.gov.au Website: www.narrabri.nsw.gov.au

PLANNING CERTIFICATE

Issued under Section 149(2)
Environmental Planning and Assessment Act 1979

Applicant

Resource Strategies Pty Ltd Level 3 39 McDougall Street MILTON QLD 4064

Applicant Reference:

Administration

Amount Paid: \$40 Receipt No.: 146268 Receipt Date: 1 June 2011

(DD NA)

Certificate Number: 482/2011

Description of Land

94 Dripping Rock Road, Boggabri Lot 33 DP 754953

Assessment Number: 03055-20000000-000

Owner

Whitehaven Coal Mining Pty Ltd

NOTE: The following information is provided pursuant to Section 149(2) of the *Environmental Assessment Act 1979* as prescribed by Schedule 4 of the *Environmental Planning and Assessment Regulation 2000* and is applicable to the subject land as of the date of this certificate.

1 Names of relevant planning instruments and DCPs

a. The name of each environmental planning instrument that applies to the carrying out of development on the land:

Local Environmental Plan (LEP)

Narrabri Local Environmental Plan 1992

Regional Environmental Plan (REP)

Nil

Certificate No: 482/2011 Page 1 of 7

State Environmental Planning Policy (SEPP)

- SEPP No.1 Development Standards
- SEPP No. 4 Development without Consent & Miscellaneous Exempt and Complying Development
- SEPP No. 6 Number of Storeys in a Building
- SEPP No. 21 Caravan Parks
- SEPP No. 22 Shops and Commercial Premises
- SEPP No. 30 Intensive Agriculture
- SEPP No. 33 Hazardous and Offensive Development
- SEPP No. 36 Manufactured Home Estates
- SEPP No. 44 Koala Habitat Protection
- SEPP No. 50 Canal Estate Development
- SEPP No. 55 Remediation of Land
- SEPP No. 62 Sustainable Aquaculture
- SEPP No. 64 Advertising and Signage
- SEPP No. 65 Design Quality of Residential Flat Development
- SEPP (Housing for Seniors or People with a Disability) 2004
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Major Development) 2005
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Temporary Structures) 2007
- SEPP (Infrastructure) 2007
- SEPP (Rural Lands) 2008
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Affordable Rental Housing) 2009
- b. The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved):

Nil

- **c.** The name of each development control plan that applies to the carrying out of development on the land:
 - DCP Exempt and Complying Development
 - DCP Landfill Development
 - DCP Notification Policy
 - DCP Outdoor Advertising
 - DCP Parking Code
 - DCP Subdivision Code
 - DCP Transportable Homes
 - DCP Water Supply to Buildings
 - DCP Drainage to Buildings
 - DCP Building Line
 - DCP Encroachment onto Public Roads
 - DCP Building near Sewer and Stormwater mains

Note: In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

Certificate No: 482/2011 Page 2 of 7

2 Zoning and land use under relevant LEPs

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) the identity of the zone, whether by reference to a name (such as "Residential Zone" or "Heritage Area") or by reference to a number (such as "Zone No 2 (a)"),

1 (a) (General Rural) Zone.

(b) the purposes for which the instrument provides that development may be carried out within the zone without the need for development consent,

Agriculture (other than ancillary dwellings and intensive livestock keeping establishments); forestry (other than ancillary dwellings and pine plantations); rural levees.

(c) the purposes for which the instrument provides that development may not be carried out within the zone except with development consent,

Any purpose other than a purpose included in item 2 or 4.

(d) the purposes for which the instrument provides that development is prohibited within the zone.

Motor showrooms; residential flat buildings; shops (other than general stores not exceeding 100 square metres in gross floor area).

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land and, if so, the minimum land dimensions so fixed.

100 hectares or more (Clause 17 of the LEP).

Note: There are other provisions within the LEP where a dwelling may be permissible subject to consent on smaller allotments.

(f) whether the land includes or comprises critical habitat,

The land does not include or comprise a critical habitat.

(g) whether the land is in a conservation area (however described),

The land is not within a conservation area.

(h) whether an item of environmental heritage (however described) is situated on the land.

There Isnt an item of environmental heritage situated on the land.

Certificate No: 482/2011 Page 3 of 7

3 Complying Development

Whether or not the land is land on which complying development may be carried out under each of the codes for complying development in State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Yes

If complying development may not be carried out on that land because of one or more of the requirements under clause 1.19 of that Policy, why it may not be carried out.

Not Applicable

4 Coastal protection

Whether or not the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979, but only to the extent that the council has been so notified by the Department of Public Works.

Not applicable.

5 <u>Mine subsidence</u>

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

The land isn't proclaimed to be in a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act 1961*.

6 Road widening and road realignment

The land isn't affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) any environmental planning instrument, or
- (c) any resolution of the council.

7 <u>Council and other public authority policies on hazard risk</u> restrictions

The land isn't affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Certificate No: 482/2011 Page 4 of 7

7A Flood related development controls information

Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

No

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

No

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the *Standard Instrument (Local Environmental Plans) Order 2006*.

8 Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

Nil

9 Contributions plans

The name of each contributions plan applying to the land.

Narrabri Section 94 Contributions Plan

10 (Repealed)

11 Bush fire prone land

None of the subject land is identified as being bushfire prone land.

12 Property vegetation plans

If the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

There Isnt a property vegetation plan under the *Native Vegetation Act 2002* applicable to the land.

Note: This advice is based on information provided by the relevant Catchment Management Authority.

Certificate No: 482/2011 Page 5 of 7

13 Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

An order has not been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land

Note: This advice is based on information provided to the Council.

14 <u>Directions under Part 3A</u>

There has been no directions by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect.

15 <u>Site compatibility certificates and conditions for seniors housing</u>

There is no current site compatibility certificate (of which the council is aware), issued under clause 25 of State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 in respect of proposed development on the land

There has been no development consent granted by Council for Housing for Seniors or People with a Disability on the land.

16 Site compatibility certificates for infrastructure

There is no valid site compatibility certificate (of which the council is aware), issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 in respect of proposed development on the land.

17 <u>Site compatibility certificates and conditions for affordable rental</u> housing

There is no current site compatibility certificate (affordable rental housing) of which the council is aware, in respect of proposed development on the land.

There has been no development consent granted by Council for affordable rental housing on the land.

Contaminated Land Management Act 1997

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land Management Act 1997</u> as additional matters to be specified in a planning certificate:

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

Council has no record that the land is significantly contaminated land at the date or the issue of this certificate.

Certificate No: 482/2011 Page 6 of 7

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is subject to a management order within the meaning of that Act at the date of the issue of this certificate.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,

Council has no record that the land is the subject of an approved voluntary management proposal within the meaning of that Act at the date of the issue of this certificate.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,

Council has no record that the land is the subject of an ongoing maintenance order within the meaning of that Act at the date of the issue of this certificate.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Council has no record that the land is the subject of a site audit statement within the meaning of that Act at the date of the issue of this certificate.

Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Note. Section 26 of the <u>Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009</u> provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

Council is not aware of any exemption under section 23 or authorization under section 24 of the Act.

Nicholas Wilton

Manager Planning and Development Services

Date of Certificate: 6 June 2011

Certificate No: 482/2011 Page 7 of 7

APPENDIX B

BORELOGS

Soil Bore/M	lonitor	ing Well	# BH-1								Sheet 1 of 1	F-1-55-d
Job Number:	11-719					4						
Client:	Whiteh	aven Coal				=		Easting	150.18951°		Logged by:LK	
Time & Date		15/6/11				=			30.63905°		1	
Site Location:			Drilling					Elevation			Checked by:	
		C	Company		Constant 1		Dandhaan () a				-	
Surface Cover:				mm		mm	Roadbase: () n		Other: (Gra	ss) mm		
Drilling Method:		Hand Tro	wel (X)	Hand Auger (<u>) mm dia.</u> Pu	ısh Tube () mm dia.	1	<u> </u>	1	Other e.g. Test Pit () Size (m)
Profile Dep	th	Sampled Collected	Soil Type	Colour	Consi	istency	Particle / Soil Description	Plasticity	Moisture	Observati	ions and Comments	Monitoring Well
in (m bgl))	0 9	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		ample	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist	a a ranari i	he presence of shells,	
Note: Record the that groundwa		ű	G = GRAVEL	orange, yellow, dark,	m etiff (me)	m.dense	Well Rounded	Medium	SM = Slightly	organic ma	atter, staining, odour	
encountered, de		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PID	/ FID reading in (ppm)	
any ini	_	(X)	1-HLL	mottieu.	hard (h)	v.uerise	Well Sorted		D = Diy			
Gravel	0.2	х	GR	Grey		L		Low	DRY	F	River stones	
Borehole Aband			(Y) Backfill	ed & Compacted	() Resu	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay	Sandy	Clay	Sand Rock	Fill Gravel						Soil	Backfilled	
	_d = 0.0 y 0	EEE	93858	W///								
										Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	·				

Soil Bore/M	onitor	ing Well	# BH-2								Sheet 1 of 1	F-1-55-d
Job Number:	11-719											
	Whiteh	aven Coal				-		Easting	150.18979°		Logged by:LK	
Time & Date		15/6/11				-			30.63923°			
Site Location:			Drilling Company					Elevation			Checked by:	
Surface Cover:		Concrete	l .	mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm	1	
Drilling Method:		Hand Tro	wel (X)	Hand Auger () mm dia. Pu	sh Tube () mm dia.				Other e.g. Test Pit () Size (m)
			T			•	Particle / Soil					, ,,
Profile Dept	th	Sampled Collected	Soil Type	Colour	Consi	stency	Description	Plasticity	Moisture	Observati	ons and Comments	Monitoring Well
in (m bgl)		loo ge	C = CLAY	a a blasti	CLAY	SAND	Particles		S = Saturated			Installation
		ample	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist	e.a. report t	he presence of shells,	
Note: Record the that groundwa		S	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly Moist	organic ma	atter, staining, odour / FID reading in (ppm)	
encountered, de any fill		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	D = Dry		,	
VIII	<i></i>	(X)			hard (h)		Well Sorted					
Sandy clay	0.2	х	SC	Brown		L		Low	DRY		Roots	
Sandy clay	0.5	х	SC	Lt Brown		L		Low	DRY	F	Roots/rocks	
Borehole Aband	onment:		(Y) Backfille	ed & Compacted	() Resu	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay	Sandy Clay S	Clay Sand	Sand	Fill Gravel						Soil		
										Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	nt Metho	od					Volume Purged:	:				
Ī										Ī		

Soil Bore/N	lonitor	ing Well	# BH-3								Sheet 1 of 1	F-1-55-d
Job Number:	11-719					ı					Oricce 1 or 1	
Client:	Whiteha	aven Coal				-		Easting	150.18972°		Logged by:LK	
Time & Date		15/6/11				-			30.63921°			
Site Location:			Drilling Company					Elevation	-		Checked by:	
		Concrete:) mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm		
Surface Cover: Drilling Method:		Hand Tro		Hand Auger (sh Tube (,	Other e.g. Test Pit () Size (m)
Drilling Method:		nand Iro	wei (X)	nand Auger () mm dia. Pu	sn rube () mm dia.			I	Other e.g. Test Pit () Size (m)
Profile Dep	oth	cted	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	Sampled Collected	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		peldu	M = SILT	e.g. black, red, grey,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist			
Note: Record th	e depth	Saı	S = SAND G = GRAVEL	orange	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High Medium	M = Moist SM = Slightly	organic m	the presence of shells, atter, staining, odour	
that groundwa encountered, d			R = ROCK	pale,	stiff (st)	dense	Matrix	Low	Moist	mottling PID) / FID reading in (ppm)	
any fill		Mark (X)	F= FILL	mottled.	v.stiff (v.st) hard (h)	v.dense	Poorly Sorted Well Sorted		D = Dry			
Sandy clay	0.2	Х	SC	Brown		L		Low	DRY		Roots	
Sandy clay	0.5	х	SC	Brown		L		Low	DRY		Roots	
Borehole Abano				led & Compacted	() Resu	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
	, -	فحدا	200	WIIIA						Water		
										Water		
										Quality Co	ntrol Samples No	
										List:		
										LIG1		
Well Developme	ent Metho	od					_ Volume Purged:					

Soil Bore/N	onitor	ing Well	# BH-4								Sheet 1 of 1	F-1-55-d
Job Number:	11-719					l .					Oricce 1 or 1	
Client:	Whiteh	aven Coal				-		Easting	150.18972°		Logged by:LK	
Time & Date		15/6/11				-			30.63921°			
Site Location:			Drilling Company					Elevation	-		Checked by:	
Sfara Causan		Concrete:		mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm	7	
Surface Cover: Drilling Method:		Hand Tro	wel (X) H	Hand Auger () mm dia. P	ush Tube () mm dia.				Other e.g. Test Pit () Size (m)
	1			1			T					, (,
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	loo p	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		ample	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist	a a report t	be presented of shells	
Note: Record the	e depth	Š	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
encountered, d		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PiL) / FID reading in (ppm)	
uy		(X)			hard (h)		Well Sorted		,			
Silt/Gravel	0.2	х	GM	Brown / orange		L	VA	Low	MOIST	F	Roots/Stones	
						l						
		<u> </u>		<u> </u>					<u> </u>			
Borehole Aband	donment:		(Y) Backfille	ed & Compacted	() Resu	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay	Sand Rock	Fill Gravel						Soil		
			555							Water		
										*Valci		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	:				

Soil Bore/N	lonitor	ing Well	# BH-5								Sheet 1 of 1	F-1-55-d
Job Number:	11-719					J					Oricce 1 or 1	
Client:	Whiteh	aven Coal				=		Easting	150.19093°		Logged by:LK	
Time & Date		15/6/11				=			30.63754°			
Site Location:			Drilling Company					Elevation			Checked by:	
		Concrete:	l.) mm	Gravel: ()	mm	Roadbase: () n	I	Other: (Gra	ss) mm		
Surface Cover:		Hand Tro		Hand Auger () mm dia.			,	Other e a Test Bit /) Size (m)
Drilling Method:		nand Iro	wei (x)	nand Auger () mm dia. P	ush Tube () mm dia.			I	Other e.g. Test Pit () Size (m)
Profile Dep	oth	cted	Soil Type	Colour	Consi	istency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	Sampled Collected	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		peldu	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist M = Moist			
Note: Record th	e depth	Saı	G = GRAVEL	orange	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
that groundwa encountered, d			R = ROCK	pale,	stiff (st)	dense	Matrix	Low	Moist	mottling PID) / FID reading in (ppm)	
any fill		Mark (X)	F= FILL	mottled.	v.stiff (v.st) hard (h)	v.dense	Poorly Sorted Well Sorted		D = Dry			
Silt/Gravel	0.2	х	GM			L	VA	Low	MOIST	F	Roots/Rocks	
Borehole Abano	donment:		(Y) Backfill	led & Compacted	() Res	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay and	Sand Rock	Fill Gravel						Soil		
			1440	<i></i>						Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	:				

Soil Bore/N	onitor	ing Well	# BH-6								Sheet 1 of 1	F-1-55-d
Job Number:	11-719											
Client:	Whiteh	aven Coal				=		Easting	150.19093°		Logged by:LK	
Time & Date		15/6/11				_		South	30.63754°			
Site Location:			Drilling Company					Elevation	295m		Checked by:	
Surface Cover:		Concrete:		mm	Gravel: ()	mm	Roadbase: () r	nm	Other: (Gra	ss) mm	1	
Drilling Method:		Hand Tro	wel (X) H	land Auger () mm dia. P	ush Tube () mm dia.				Other e.g. Test Pit () Size (m)
•			T				1					,,,,,
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Consi	istency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	80 0	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		mplec	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist			
Note: Record the	e depth	တ္တ	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
encountered, d		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PiL) / FID reading in (ppm)	
u.i.y		(X)			hard (h)		Well Sorted		,			
Silt/Gravel	0.2	х	М	Brown		L		Low	DRY	F	Roots/Stones	
Borehole Aband			(Y) Backfille		() Res	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
										Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged	:				
I										ĺ		

Soil Bore/N	Monitor	ing Well	# BH-7								Sheet 1 of 1	F-1-55-d
Job Number:	11-719										0.1001	
Client:	Whiteh	aven Coal				-		Easting	150.19100°		Logged by:LK	
Time & Date		15/6/11				-			30.63746°			
Site Location:			Drilling Company					Elevation	-		Checked by:	
		Concrete:		mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm	1	
Surface Cover: Drilling Method:		Hand Tro		Hand Auger (ush Tube () mm dia.		•		Other e.g. Test Pit () Size (m)
Drilling Method.		manu mo	wer (x) <u>r</u>	land Auger (/mmua.	usii rube (1			ı	Other e.g. Test Fit () 312e (III)
Profile De	oth	cted	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bg	1)	Colle	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		Sampled Collected	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist M = Moist		-	
Note: Record th	ne depth	Sa	G = GRAVEL	orange, yellow, dark,	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
that groundw encountered, d			R = ROCK	pale,	stiff (st)	dense	Matrix	Low	Moist	mottling PID) / FID reading in (ppm)	
any fill		Mark (X)	F= FILL	mottled.	v.stiff (v.st) hard (h)	v.dense	Poorly Sorted Well Sorted		D = Dry			
Silt/Gravel	0.2	х	М	Brown		L		Low	DRY	F	Roots/Stones	
				1								
Borehole Aban	donment:		(Y) Backfille	ed & Compacted	() Resi	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay and	Sand Rock	Fill Gravel						Soil		
]	د د دما	EEE	62628	- · · · · · /////								
										Water	-	
										Quality Co	ntrol Samples No	
										l ist.		
										LIU1.		
Well Developm	ent Metho	od					Volume Purged:	:				

Soil Bore/N	lonitor	ing Well	# BH-8								Sheet 1 of 1	F-1-55-d
Job Number:	11-719											
Client:	Whiteh	aven Coal				-		Easting	150.19543°		Logged by:LK	
Time & Date		15/6/11				_		South	30.63242°			
Site Location:			Drilling Company					Elevation	289m		Checked by:	
Surface Covers		Concrete:		mm	Gravel: ()	mm	Roadbase: () r	I	Other: (Gra	ss) mm	1	
Surface Cover: Drilling Method:		Hand Tro	wel (X) H	land Auger () mm dia. P	ush Tube () mm dia.				Other e.g. Test Pit () Size (m)
•			T -				1					,,,,,
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	8	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		mplec	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist			
Note: Record the	e depth	တ္တ	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
encountered, d		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PIL) / FID reading in (ppm)	
any m	7	(X)	1-1122	mottled.	hard (h)	Vidense	Well Sorted		D = Diy			
Silt/Gravel	0.2	х	M,S,G	Brown		L		Low	DRY	R	oots/Pebbles	
Borehole Abano	donment:		(Y) Backfille	ed & Compacted	() Resi	urfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
		ققت	icacacil	VIIII						Water		
										Fracel		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged	:				
			_									

Mathematical Column 1	Soil Bore/N	lonitor	ing Well	# BH-9								Sheet 1 of 1	F-1-55-d
Part	Job Number	11-719					ı					Oricce 1 or 1	
This A		Whiteh	aven Coal				-		Easting	150.19481°		Logged by:LK	
Part			15/6/11				-						
Second Content Conte										-		Checked by:	
March Marc			Concrete:	l .	mm	Gravel: ()	mm	Roadbase: () r	1		ss) mm		
Particular plane Particular			1								,	Other e a Test Bit /) Size (m)
	Drilling Method:		Hand Tro	wei (×) <u>r</u>	and Auger () mm dia.	ish rube () mm dia.			I	Other e.g. Test Pit () Size (m)
Note Section	Profile Dep	oth	cted	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
Note Section	in (m bgl)	Colle	C = CLAY		CLAY	SAND	Particles		S = Saturated			
Note Section			peldu										
Marriad Marr	Note: Record th	e depth	Sar		orange,				_		organic m	atter, staining, odour	
Note	encountered, d				pale,					Moist	mottling PID) / FID reading in (ppm)	
Southing Administration South Administration Southing Administration Southing Administra	any fill			F= FILL	mottled.		v.dense			D = Dry			
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand	Silt/Gravel	0.2	х	C,G,S	Mottle, orange, grey, brown		L	VA	Low	MOIST	F	Roots/Rocks	
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sandy Silt Sandy Clay Sand Sand Sand Sand Sand Sand Sand Sand													
Sand Silt Clay Clay Sand C	Borehole Abano	donment:			ed & Compacted	() Resu	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Quality Control Samples No List:				Sand Rock							Soil		
List:											Water		
List:													
List:											_		
											Quality Co	ntrol Samples No	
Well Development Method Volume Purged:											List:		
	Well Developme	ent Metho	od					Volume Purged	:				

Soil Bore/N	lonitor	ing Well	# BH-10								Sheet 1 of 1	F-1-55-d
Job Number:	11-719											
Client:	Whiteh	aven Coal				-		Easting	150.19529°		Logged by:LK	
Time & Date	-	15/6/11				-			30.63278°			
Site Location:			Drilling					Elevation			Checked by:	
		Concrete	Company Bitumen: ()	mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm	₹	
Surface Cover:		1							00	,		
Drilling Method:		Hand Tro	wei(×) <u>F</u>	land Auger () mm dia. Pi	ush Tube () mm dia.			1	Other e.g. Test Pit () Size (m)
Profile Dep	oth	cted	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Woll
in (m bgl	١	Sampled Collected	C = CLAY		CLAY	SAND	Particles		S = Saturated			Monitoring Well Installation
(29.	,	peld	M = SILT	e.g. black,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist			
Note: Record th	e depth	Sarr	S = SAND G = GRAVEL	red, grey, orange,	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High	M = Moist SM = Slightly		he presence of shells, atter, staining, odour	
that groundwa encountered, d	ater is		R = ROCK	yellow, dark, pale,	stiff (st)	dense	Matrix	Medium Low	Moist) / FID reading in (ppm)	
any fill	cpiii oi	Mark	F= FILL	mottled.	v.stiff (v.st)	v.dense	Poorly Sorted		D = Dry			
		(X)			hard (h)		Well Sorted					
Silt/Gravel	0.2	Х	C,G,S,M	Dk Brown		L	VA	Low	MOIST	F	Roots/Stones	
i						T						
				1					 			
Paraboli 41		<u> </u>	/ V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-100	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(Pit	, , , ,		West- M	agament/Di	aariba \
Borehole Abanc			(Y) Backfille		() Resi	urfaced (Concret	e/ditumen)	() Monito	oring Well Installed	vvaste Man	agement/Disposal: (De	SCIDE)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
	-			2002						Water		
										0		
											ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:					

Soil Bore/M	lonitor	ing Well	# BH-1	-1			Next to ASTs drivewa	ıy			Sheet 1 of 1	F-1-55-d
Job Number:	11-719					_						
Client:	Whiteha	aven Coal				<u>-</u> .		South	30.646318		Logged by:LK	
Time & Date			14/07/201					Easting	150.194609			
Site Location:			Drilling Company		E	xcavator		Elevation			Checked by:	
Surface Cover:		Concrete:	Bitumen: () mm	Gravel: (mm	Roadbase: () n	nm	Other: (Gra	ss) mm	•	
Drilling Method:		Hand Trov	wel ()	Hand Auger (X) mm dia.	Push Tube () mm dia. Test p	oit ()			Other e.g. Test Pit () Size (m)
Profile Dep	oth	P	Soil Type	e Colour	Cons	sistency	Particle / Soil	Plasticity	Moisture	Observat	ions and Comments	
		Sampled Collected					Description	· identify	S = Saturated			Monitoring Well Installation
in (m bgl))	o pelc	C = CLAY	e.g. black,	v. soft (vs)	SAND v.loose	Particles Very Angular	V.High	V = Very Moist			
Note: Record th	e denth	Sam	S = SANI	orange	soft (s)	loose	Sub-Angular	High	M = Moist		the presence of shells,	
that groundwa encountered, de	ater is		G = GRAV	yellow, dark,	m. stiff (ms) stiff (st)	m.dense dense	Well Rounded Matrix	Medium Low	SM = Slightly Moist		atter, staining, odour D / FID reading in (ppm)	
any fill	epui oi	Mark	F= FILL		v.stiff (v.st)	v.dense	Poorly Sorted		D = Dry			
Silt	0.5	(X) X	M = SILT	- Brown	hard (h)	L	Well Sorted Matrix	Low	D = Dry		No smell	
	B											
							1	1				
Borehole Aband			(Y) Back	xfilled & Compacted	() Re	surfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	nagement/Disposal: (De	scribe)
Sandy Silt			Sand	Fill ##						Soil		
Sand Silt Clay	ClayS	and	Rock	Gravel								
										Water		
										Quality Co	ntrol Samples No	
										LISÜ		
Well Developme	ent Metho	d					Volume Purged:	·				

Soil Bore/N	lonitor	ing Well	# BH-2-	1			Cattle Spray Race				Sheet 1 of 1	F-1-55-d
Job Number:	11-719					-						
Client:	Whiteha	aven Coal				_		South	30.645411		Logged by:LK	
Time & Date			14/07/201	1				Easting	150.194308			
Site Location:			Drilling Company		E	cavator		Elevation			Checked by:	
Surface Cover:		Concrete:	Bitumen: () mm	Gravel: ()	mm	Roadbase: () n	nm	Other: (Gra	ss) mm	•	
Drilling Method:		Hand Trov	wel ()	Hand Auger (X) mm dia. P	ush Tube () mm dia. Test p	oit (X)			Other e.g. Test Pit () Size (m)
Profile Dep	nth	P	Soil Type	Colour	Consi	istency	Particle / Soil	Plasticity	Moisture	Observati	ions and Comments	
		ollect					Description	1 lasticity		0200.144		Monitoring Well Installation
in (m bgl)	Sampled Collected	C = CLAY M = SILT	e.g. black,	v. soft (vs)	SAND v.loose	Particles Very Angular	V.High	S = Saturated V = Very Moist			
Note: Record th	e denth	Sam	S = SAND G = GRAVE	orange	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High	M = Moist		he presence of shells, atter, staining, odour	
that groundwa encountered, d	ater is		R = ROCK	yellow, dark,	stiff (st)	dense	Matrix	Medium Low	SM = Slightly Moist		/ FID reading in (ppm)	
any fill		Mark (X)	F= FILL	mottled.	v.stiff (v.st) hard (h)	v.dense	Poorly Sorted Well Sorted		D = Dry			
Gravel	0.1	X	M = SILT	Brown		L	Particles	Low	D = Dry	Relativel	y new metal bottom	
	_											
Borehole Aband	donment:		(Y) Back	filled & Compacted	() Resi	urfaced (Concrete	e/Bitumen)	() Monito	ring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay	Sandy Clay S	Clay Sand	Sand Rock	Fill Gravel						Soil		
		_		_						Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od .					Volume Purged:	:				

Soil Bore/M	lonitor	ing Well	# TP1				Same as BH3				Sheet 1 of 1	F-1-55-d
Job Number:	11-719					•						
Client:	Whiteh	aven Coal				=		South	30.63921		Logged by:LK	
Time & Date			14/07/2011	l		_		Easting	150.18972			
Site Location:	внз		Company -					Elevation			Checked by:	
Surface Cover:		Concrete:	Excavator Bitumen: () r	mm	Gravel: ()	mm	Roadbase: () n	nm	Other: (Gra	ss) mm	1	
Drilling Method:		Hand Trov	vel () Ha	ınd Auger ()	mm dia. Pus	sh Tube () mm dia. Test Pit	(X)			Other e.g. Test Pit (X) Size (m)
							1	<u> </u>				
Profile Dep	th	Sampled Collected	Soil Type	Colour	Consi	istency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl))	Soli	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		mplec	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist			
Note: Record the		S,	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly	organic m	he presence of shells, atter, staining, odour	
encountered, de		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PIL	/ FID reading in (ppm)	
		(X)	T-TILL	motticu.	hard (h)	vidense	Well Sorted		D = Diy			
Gravel	1	х	G = GRAVEL	Brown		L	Very Angular	Low	D = Dry	ı	Lots of rock	
Sand Gravel	1.5	х	S/G	Lt Brown		L	Very Angular	Low	D = Dry	San	dy, lots or rock	
Sand Gravel	2	х	S/G	Brown		L	Very Angular	Low	D = Dry	Sandy, k	ots or rock, some fill	
					5 () ((
					Refusal (E	nd of reach)						
Borehole Aband	lonment:		(Y) Backfilled	d & Compacted	() Resi	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay		Clay and	Sand Rock	Fill Gravel						Soil		
		تت	ICACACI	viiii.						Water		
										FFUICI		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	·				
			_				_				_	

Soil Bore/M	lonitor	ing Well	# TP2				- W					F-1-55-d
Lab Nameh and	11-719					ļ	Eastern wall for test p	oit			Sheet 1 of 1	
Job Number:		aven Coal						0.4	00.00004		Logged by: LK	
Client:								South			1	
Time & Date Site Location:	DLIO		14/07/2011 Drilling					Easting	-		Checked by:	
Site Location.	BH3		Company					Elevation			1	
Surface Cover:	1	Concrete:	Bitumen: () n	nm	Gravel: () n	nm	Roadbase: () n	nm	Other: (Gra	ss) mm		
Drilling Method:		Hand Trov	vel () <u>Ha</u>	nd Auger ()	mm dia. Pus	h Tube () mm dia.				Other e.ç	g. Test Pit (X) Size (m)
Profile Dep	th	Sampled Collected	Soil Type	Colour	Consis		Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well Installation
in (m bgl))	O Pa	C = CLAY M = SILT	e.g. black,	CLAY v. soft (vs)	SAND v.loose	Particles Very Angular	V.High	S = Saturated V = Very Moist			installation
		gamp	S = SAND	red, grey,	soft (s)	loose	Sub-Angular	High	M = Moist	e.g. report t	he presence of shells,	
Note: Record the that groundwa		0,	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly Moist	organic m	atter, staining, odour / FID reading in (ppm)	
encountered, de		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	D = Dry		,	
		(X)			hard (h)		Well Sorted		,			
Clay Sand	0.2	х	CMS	Brown	I	L	Poorly Sorted	Low	D = Dry	0	rganic Matter	
Sand Gravel	0.5	х	S/G	Brown	ı	L	Very Angular	Low	D = Dry	Orga	nic matter, rocks	
Sand Gravel	1	х	S/G	Brown	ı	L	Very Angular	Low	D = Dry		Rocks	
Sand Gravel	2	х	S/G	Brown	ı	L	Very Angular	Low	D = Dry		Rocks	
Borehole Aband			(Y) Backfilled		() Resu	rfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay	Sandy Clay S	Clay Sand	Sand Rock	Fill Gravel						Soil		
										Water		
										Quality Co	ntrol Samples Yes	
										List: 2m	TP	2-Q-2.0
Well Developme	ent Metho	od					Volume Purged:					

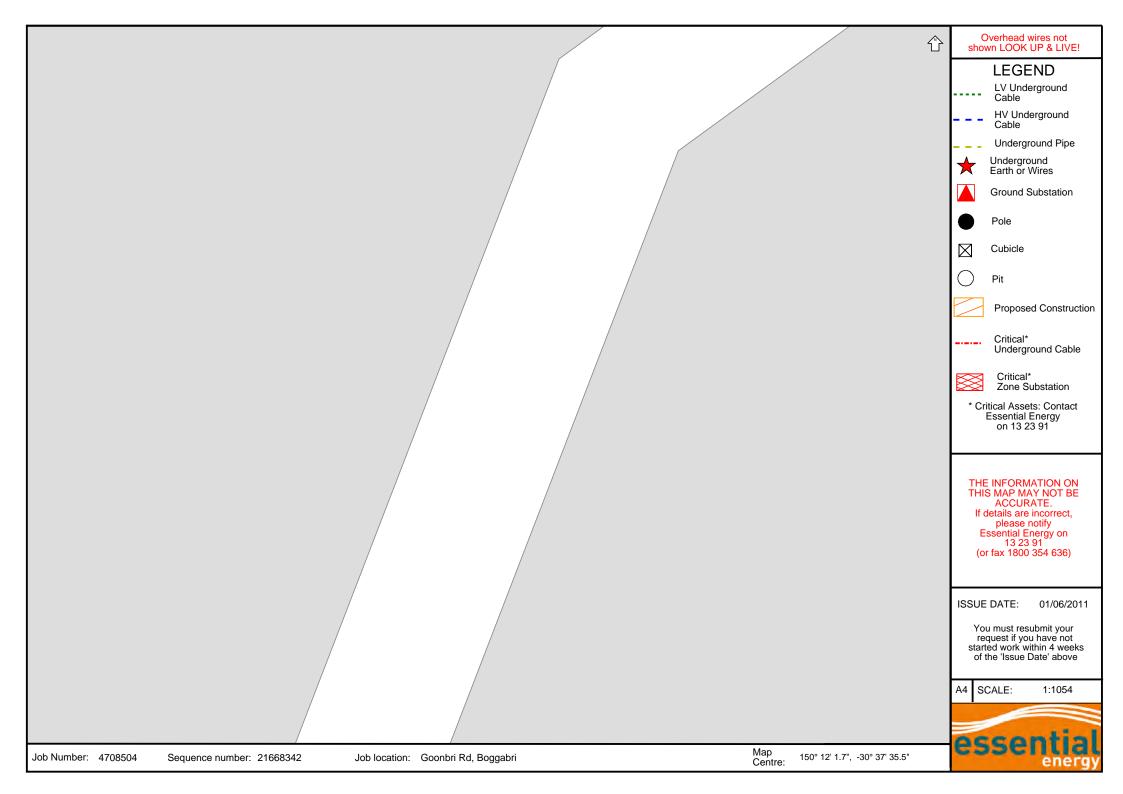
Soil Bore/N	lonitor	ing Well	# TP3				Western wall of BH3	3			Sheet 1 of 1	F-1-55-d
Job Number:	11-719					- -			_			
Client:	Whiteh	aven Coal				_		Easting	150.189712		Logged by:LK	
Time & Date			14/07/2011	1				South	30.639211			
Site Location:			Drilling Company		E	xcavator		Elevation			Checked by:	
Surface Cover:		Concrete:	Bitumen: () mm	Gravel: ()	mm	Roadbase: () n	nm	Other: (Gra	ss) mm	!	
Drilling Method:		Hand Trov	wel ()	Hand Auger (X) mm dia.	Push Tube () mm dia. Test p	oit (X)			Other e.g. Test Pit () Size (m)
			1			-	B. 454 (0.7)					
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Cons	sistency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	log g	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		mple.	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist			
Note: Record the		Š	G = GRAVE	orange	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly	organic m	the presence of shells, atter, staining, odour	
encountered, d		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	Moist D = Dry	mottling PID) / FID reading in (ppm)	
any fill		(X)	r= ricc	mottled.	hard (h)	v.uerise	Well Sorted		D = Diy			
Silt sand	0.2	х	M/S	Lt Brown		L	Sub-Angular	Low	D = Dry		Roots	
Sand Gravel	0.5	х	S/G	Lt Brown		L	Very Angular	Low	D = Dry	F	Roots, rocks	
Sand Gravel	1	х	S/G	Lt Brown		L	Very Angular	Low	D = Dry	I	Rocks/roots	
	1.5	х	S/G	Lt Brown		L	Very Angular	Low	D = Dry		Rock/roots	
Borehole Aband	donment:		(Y) Backf	filled & Compacted	() Res	surfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
										Water		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	:				

Soil Bore/Mo	onitor	ing Well	# TP4				Farmers creek				Sheet 1 of 1	F-1-55-d
Job Number:	11-719					•						
Client:	Whiteha	ven Coal				_		Easting	150.193604		Logged by:LK	
Time & Date			14/07/201	1		_		South	30.645001			
Site Location:			Drilling Company		E	xcavator		Elevation			Checked by:	
		Concrete:	Bitumen: () mm	Gravel: ()	mm	Roadbase: () n	1	Other: (Gra	ss) mm	1	
Surface Cover:										,	Other a Test Pit /) Si ()
Drilling Method:		Hand Trov	vei ()	Hand Auger (X) mm dia.	Push Tube () mm dia. Test p	oit (x)		1	Other e.g. Test Pit () Size (m)
Profile Depth	h	cted	Soil Type	Colour	Cons	sistency	Particle / Soil Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Woll
in (m bgl)		Sampled Collected	C = CLAY		CLAY	SAND	Particles		S = Saturated			Monitoring Well Installation
iii (iii bgi)		pled	M = SILT	e.g. black,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist			
Note: Record the	denth	Sam	S = SAND G = GRAVE	orange	soft (s)	loose	Sub-Angular Well Rounded	High	M = Moist		the presence of shells, atter, staining, odour	
that groundwate encountered, dep	er is		R = ROCK	yellow, dark,	m. stiff (ms) stiff (st)	m.dense dense	Matrix	Medium Low	SM = Slightly Moist		7 / FID reading in (ppm)	
any fill	ptii Oi	Mark	F= FILL	mottled.	v.stiff (v.st)	v.dense	Poorly Sorted		D = Dry			
Clay, Sand	0.2	(X) X	CMS	Dk Brown	hard (h)	L	Well Sorted Matrix	Low	SM = Slightly Mois	Old 44 gl drun	n on top of sample TPH & metals	
2000												
							1					
									<u> </u>			
Borehole Abando	nment:		(Y) Backf	filled & Compacted	() Res	surfaced (Concret	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	scribe)
Sandy Silt			Sand	Fill 🔛								
Sand Silt Clay	Clay S	and	Rock	Gravel						Soil	-	
										Water		
										_		
										Quality Co	ntrol Samples No	
										List:		
		_										
Well Developmen	it Metho	a					Volume Purged:	:				
										1		

Soil Bore/M	lonitor	ing Well	# TP5			Farmers s	shed next to sheep sh	earing area			Sheet 1 of 1	F-1-55-d
Job Number:	11-719											
Client:	Whiteh	aven Coal						Easting	150.194538		Logged by:LK	
Time & Date			14/07/2011					South	30.645161			
Site Location:			Drilling Company					Elevation			Checked by:	
Surface Cover:		Concrete:	l) mm	Gravel: () r	nm	Roadbase: () n	nm	Other: (Gra	ss) mm		
Drilling Method:		Hand Trov	vel ()	Hand Auger (X) mm dia. Pr	ush Tube () mm dia. Test p	oit (X)			Other e.g. Test Pit () Size (m)
						•						
Profile Dep	th	Sampled Collected	Soil Type	Colour	Consi	stency	Particle / Soil Description	Plasticity	Moisture	Observati	ions and Comments	Monitoring Well
in (m bgl))	S	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		mpled	M = SILT	e.g. black, red, grey,	v. soft (vs)	v.loose	Very Angular	V.High	V = Very Moist			
Note: Record th		Sai	S = SAND G = GRAVEL	orange,	soft (s) m. stiff (ms)	loose m.dense	Sub-Angular Well Rounded	High Medium	M = Moist SM = Slightly		he presence of shells, atter, staining, odour	
that groundwa encountered, de			R = ROCK	yellow, dark, pale,	stiff (st)	dense	Matrix	Low	Moist	mottling PID	/ FID reading in (ppm)	
any fill		Mark (X)	F= FILL	mottled.	v.stiff (v.st) hard (h)	v.dense	Poorly Sorted Well Sorted		D = Dry			
Clay, Sand	0.5	X	CMS	Brown	M	.D.	Matrix	Low	М		aining TPH Engine oil o exten to approx 0.5m	
Sand Gravel	1	х	S/G	Lt Brown	ı	L	Very Angular	Low	М			
	•											
							1					
Borehole Aband					() Resu	ırfaced (Concrete	e/Bitumen)	() Monito	ring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay	Sandy Clay S	Clay and	Sand Rock	Fill Gravel						Soil		
										Water		
										0		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	:				

Soil Bore/N	lonitor	ing Well	# TP6-1				Area in front of ASTs	s			Sheet 1 of 1	F-1-55-d
Job Number:	11-719					_]	
Client:	Whiteh	aven Coal				_		Easting	150.194626		Logged by:LK	
Time & Date			14/07/2011					South	30.646359			
Site Location:			Drilling Company		Ex	cavator		Elevation			Checked by:	
Surface Cover:		Concrete:	Bitumen: () mm	Gravel: ()	mm	Roadbase: () n	nm	Other: (Gra	ss) mm	<u>-</u>	
Drilling Method:		Hand Trov	wel ()	Hand Auger ()	mm dia. Pus	h Tube () mm dia. Test pit	(X)			Other e.g. Test Pit () Size (m)
D. (1) D.		ъ					Particle / Soil					
Profile Dep	otn	Sampled Collected	Soil Type	Colour		stency	Description	Plasticity	Moisture	Observati	ions and Comments	Monitoring Well Installation
in (m bgl)	DO Pa	C = CLAY M = SILT	e.g. black,	V. soft (vs)	SAND v.loose	Particles Very Angular	V.High	S = Saturated V = Very Moist			installation
		Samp	S = SAND	red, grey,	soft (s)	loose	Sub-Angular	High	M = Moist		he presence of shells,	
Note: Record the that groundware	ater is		G = GRAVEL R = ROCK	yellow, dark,	m. stiff (ms) stiff (st)	m.dense dense	Well Rounded Matrix	Medium Low	SM = Slightly Moist		atter, staining, odour / FID reading in (ppm)	
encountered, d any fill	epth of	Mark	F= FILL	mottled.	v.stiff (v.st)	v.dense	Poorly Sorted	2011	D = Dry			
	1	(X)			hard (h)		Well Sorted					
Clay, Sand	0.2	Х	CMS	Brown		L	Р	Low	SM = Slightly Mois			
	0.5	Х	CMS	Brown, orange mottle	m. st	ff (ms)	Matrix	Medium	M = Moist			
Sand Gravel	1	х	S/G			L	Poorly Sorted	Low	D = Dry			
					ı	Refusal						
						ded in front of 3 STs						
					Nome	nclature	TP6-1)	Tanks left to r	ight facing west			
							TP6-2)					
							TP6-3)					
		<u> </u>										
Borehole Aband	lonment:	•	(Y) Backfi	lled & Compacted	() Resi	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt	Sandy		Sand								·	
Sand Silt Clay	Clay	Sand ===	Rock	Gravel						Soil		
										Water		
										0		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged:	:				
Ī										l		

Soil Bore/M	lonitor	ing Well	# TP6-2				Area in front of AST:	s			Sheet 1 of 1	F-1-55-d
Job Number:	11-719					•						
Client:	Whiteh	aven Coal				=		Easting	150.194626		Logged by:LK	
Time & Date			14/07/2011			=		South	30.646359			
Site Location:			Drilling Company		E	xcavator		Elevation	1		Checked by:	
Surface Cover:		Concrete:	l .) mm	Gravel: ()	mm	Roadbase: () r	nm	Other: (Gra	ss) mm	1	
Drilling Method:		Hand Trov	wel ()	Hand Auger ()	mm dia. Pus	sh Tube () mm dia. Test pit	(X)			Other e.g. Test Pit () Size (m)
			1				Particle / Soil					
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Cons	istency	Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	S G	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		ample	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist	o a roport t	he presence of shells,	
Note: Record the		ίδ	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly Moist	organic m	atter, staining, odour 7 FID reading in (ppm)	
encountered, d any fill		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	D = Dry		, , , , , , , , , , , , , , , , , , ,	
· · · · · · · · · · · · · · · · · · ·	7	(X)			hard (h)		Well Sorted		-			
Clay Sand	0.2	х	CMS	Brown		L	Р	Low	SM = Slightly Mois			
	0.5	х	CMS	Brown, orange mottle	m. st	tiff (ms)	Matrix	Medium	M = Moist			
Sand Gravel	1	х	S/G			L	Poorly Sorted	Low	D = Dry			
						Refusal	1					
						ded in front of 3 STs						
					Nome	enclature	TP6-1)	Tanks left to r	right facing west			
							TP6-2)					
							TP6-3)					
Borehole Aband				lled & Compacted	() Res	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay		Clay Sand	Sand Rock	Fill Gravel						Soil		
										Water		
										0 **: -		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged	:				



Soil Bore/M	onitor	ing Well	# TP6-3				Area in front of AST:	s			Sheet 1 of 1	F-1-55-d
Job Number:	11-719					•						
Client:	Whiteh	aven Coal				=		Easting	150.194626		Logged by:LK	
Time & Date			14/07/2011			=		South	30.646359			
Site Location:			Drilling Company		E	xcavator		Elevation	1		Checked by:	
Surface Cover:		Concrete:) mm	Gravel: ()	mm	Roadbase: () r	nm	Other: (Gra	ss) mm	1	
Drilling Method:		Hand Trov	wel ()	Hand Auger ()	mm dia. Pus	sh Tube () mm dia. Test pit	(X)			Other e.g. Test Pit () Size (m)
			T				Particle / Soil					
Profile Dep	oth	Sampled Collected	Soil Type	Colour	Cons	istency	Description	Plasticity	Moisture	Observat	ions and Comments	Monitoring Well
in (m bgl)	O D	C = CLAY		CLAY	SAND	Particles		S = Saturated			Installation
		ample	M = SILT S = SAND	e.g. black, red, grey,	v. soft (vs) soft (s)	v.loose loose	Very Angular Sub-Angular	V.High High	V = Very Moist M = Moist	o a roport t	he presence of shells,	
Note: Record the		Ø	G = GRAVEL	orange, yellow, dark,	m. stiff (ms)	m.dense	Well Rounded	Medium	SM = Slightly Moist	organic m	atter, staining, odour 7 FID reading in (ppm)	
encountered, d any fill		Mark	R = ROCK F= FILL	pale, mottled.	stiff (st) v.stiff (v.st)	dense v.dense	Matrix Poorly Sorted	Low	D = Dry		, , , , , , , , , , , , , , , , , , ,	
· · · · · · · · · · · · · · · · · · ·	7	(X)			hard (h)		Well Sorted		-			
Clay Sand	0.2	x	CMS	Brown		L	Р	Low	SM = Slightly Mois			
	0.5	х	CMS	Brown, orange mottle	m. st	iff (ms)	Matrix	Medium	M = Moist			
Sand Gravel	1	х	S/G			L	Poorly Sorted	Low	D = Dry			
						Refusal	1					
						ded in front of 3 STs						
					Nome	nclature	TP6-1)	Tanks left to r	right facing west			
							TP6-2)					
							TP6-3)					
Borehole Aband				led & Compacted	() Res	urfaced (Concrete	e/Bitumen)	() Monito	oring Well Installed	Waste Man	agement/Disposal: (De	escribe)
Sandy Silt Sand Silt Clay		Clay and and	Sand Rock	Fill Gravel						Soil		
										Water		
										0 **: -		
										Quality Co	ntrol Samples No	
										List:		
Well Developme	ent Metho	od					Volume Purged	:				

APPENDIX C

DIAL BEFORE YOU DIG

Telstra Corporation Limited

DUTY OF CARE

IMPORTANT:

Please read and understand all the information and disclaimers provided below.

Sketches and Plans provided by Telstra are circuit diagrams only and indicate the presence of telecommunications plant in the general vicinity of the geographical area shown; exact ground cover and alignments cannot be given with any certainty and cover may alter over time. Telecommunications plant seldom follow straight lines and careful on site investigation is essential to uncover and reveal its exact position.

Due to the nature of Telstra plant and the age of some cables and records, it is impossible to ascertain the location of all Telstra plant. The accuracy and/or completeness of the information can not be guaranteed and, accordingly Telstra plans are intended to be indicative only.

"DUTY OF CARE"

When working in the vicinity of telecommunications plant you have a legal "Duty of Care" that must be observed.

It is the responsibility of the owner and any consultant engaged by the owner, including an architect, consulting engineer, developer, and head contractor to design for minimal impact and protection of Telstra plant. Telstra will provide plans and sketches showing the presence of its network to assist at this design stage.

It is the owner's (or constructor's) responsibility to:-

- a) request plans of Telstra plant for a particular location at a reasonable time before construction begins. If you have any doubts as to the exact location of Telstra Plant, we strongly recommend that you engage an Accredited plant Locator in your area;
- b) visually locate Telstra plant by hand digging or using non destructive water jet method (pot holing) where construction activities may damage or interfere with Telstra plant (see "Essential Precautions and Approach Distances" section for more information); and
- c) contact Telstra's **Plan Services** (see below for details) if Telstra plant is wholly or partly located near planned construction activities.

DAMAGE:

ANY DAMAGE TO TELSTRA'S NETWORK MUST BE REPORTED TO 132203 IMMEDIATELY.

The owner is responsible for all plant damage when works commence prior to obtaining Telstra plans, or failure to follow agreed instructions.

Telstra reserves all rights to recover compensation for loss or damage to its cable network or other property including consequential losses.

EMERGENCY SITUATIONS

Emergency situations are unplanned and include (amongst other things):

- · damaged or faulty underground or aerial power cables / poles
- burst/leaking water mains
- burst/leaking sewer mains.
- burst/leaking gas pipes
- any other emergency situation that may impact Telstra network.

NOTE: failure to lodge requests in time for normal maintenance work is not deemed as an emergency.

During working hours - in emergency situations, urgent requests for plans or information relating to the location of Telstra network are to be made direct to the Dial Before You Dig Service.

Note that a fast response can be provided if a request is made on line with a supplied return email address between 5am-10pm AEST 7days a week.

Outside Normal Business hours or outside hours of automated responses - in emergency situations, urgent requests for plans or information relating to the location of Telstra network are to be made direct to Telstra on phone 1800 801 801

NATURAL DISASTERS

Natural Disasters include (amongst other things):

- Earthquakes
- Cyclones
- Floods; and
- Tsunami

In the case of such events, urgent requests for plans or information relating to the location of Telstra network can be made directly to Telstra Network Integrity Team Managers as follows:

NSW - Peter Garth 0419 263 445

QLD - Tony Kent 0419 727 397

VIC/TAS - David Povazan 0417 300 947

SA/NT/WA - Dave Ballard 0419 807 901

PLAN SERVICES

For all Telstra DBYD (Dial Before You Dig) map enquiries please contact Telstra Plan Services

email - Telstra.Plans@team.telstra.com

fax - (02) 4961 3714

phone - 1800 653 935 (for urgent, onsite or optic fibre enquiries)

Please note - to make an enquiry the plans must be current (within 60 days of issue). If your plans have expired you will need to submit a new request via DBYD.

ASSET RELOCATIONS

You are not permitted to relocate or alter any Telstra assets or network under any circumstance.

For all enquiries relating to the relocation of Telstra assets please phone 1800 810 443 or email F1102490@team.telstra.com

CONCERNING TELSTRA PLANS:

Please note the following:

- For plans of Telstra locations contact **Dial Before You Dig** at least 2 business days prior to digging. (www.1100.com.au or phone 1100)
- Fast response can be provided by Telstra if an email address is supplied. (if posted, this may take up to one week or longer to receive plans)
- Telstra plans and information provided are valid for 60 days from the date of issue.
- Telstra owns and retains the copyright in all plans and details provided in conjunction with the applicant's request. The applicant is authorised to use the plans and details only for the purpose indicated in the applicant's request. The applicant must not use the plans or details for any other purpose. The plans and details should be disposed of by shredding or any other secure disposal method after use.
- Telstra plans or other details are provided only for the use of the applicant, its servants, or agents. The applicant may not give the plans or details to other parties, and may not generate profit from commercialising the plans or details.
- Please contact Telstra Plan Services (see above for details) immediately should you locate Telstra assets not indicated on these plans.
- Telstra, its servants or agents shall not be liable for any loss or damage caused or occasioned by the use of plans and or
 details so supplied to the applicant, its servants and agents, and the applicant agrees to indemnify Telstra against any claim
 or demand for any such loss or damage.
- Please ensure Telstra plans and information provided remains on-site at all times throughout your construction phase.

ESSENTIAL PRECAUTIONS and APPROACH DISTANCES:

NOTE: If the following clearances cannot be maintained, please contact Telstra Plan Services (see above for details) for advice on how best to resolve this situation.

1. On receipt of plans and sketches and before commencing excavation work or similar activities near Telstra's plant, **carefully locate this plant first** to avoid damage. Undertake prior manual exposure such as potholing when intending to excavate or work **closer** to Telstra plant than the following approach distances.

Where Telstra's plant is in an area where road and footpaths are well defined by kerbs or other features a minimum clear distance of 600mm must be maintained from where it could be reasonably presumed that plant would reside.

In non established or unformed reserves and terrain, this approach distance must be at least 1.5 metres.

In country/rural areas which may have wider variations in reasonably presumed plant presence, the following minimum approach distances apply:

- a) Parallel to major plant: 10 metres (for IEN, optic fibre and copper cable over 300 pairs)
- b) Parallel to other plant: 5 metres

NOTE: Even manual pot-holing needs to be undertaken with extreme care, commonsense and employing techniques least likely to damage cables. For example, orientate shovel blades and trowels parallel to the cable rather than digging across the cable.

If construction work is parallel to Telstra plant, then careful hand digging or using non destructive water jet method (pot-holing) at least every 5m is required to establish the location of all plant, hence confirming nominal locations before work can commence.

2. Maintain the following minimum clearance between construction activity and actual location of Telstra Plant.

Jackhammers/Pneumatic Breakers	Not within 1.0m of actual location.
Vibrating Plate or Wacker Packer Compactor	Not within 0.5m of Telstra ducts. 300mm compact clearance cover b efore compactor can be used across Telstra ducts.
Boring Equipment (in-line, horizontal and vertical)	Not within 2.0m of actual location . Constructor to hand dig or use non-destructive water jet method (pothole) and expose plant.
Heavy Vehicle Traffic (over 3 tonnes)	Not to be driven across Telstra ducts (or plant) with less than 600mm cover. Constructor to check depth via hand digging.
Mechanical Excavators, Farm ploughing, Boring and Tree Removal	Not within 1.0m of actual location . Constructor to hand dig or use non-destructive water jet method (pot-hole) and expose plant.

All Telstra pits and manholes should be a minimum of 1.2m in from the back of kerb after the completion of your work.

All Telstra conduit should have the following minimum depth of cover after the completion of your work:-

- Footway 450mm
- Roadway 450mm at drain invert and 600mm at road centre crown

For clearance distances relating to Telstra pillars, cabinets and RIMs/RCMs please contact Telstra Plan Services (see above for details).

FURTHER ASSISTANCE:

Assistance can be obtained by contacting Telstra Plan Services

Where on-site location is provided, the owner is responsible for all hand digging or use non-destructive water jet method (pot-holing) to visually locate and expose Telstra plant.

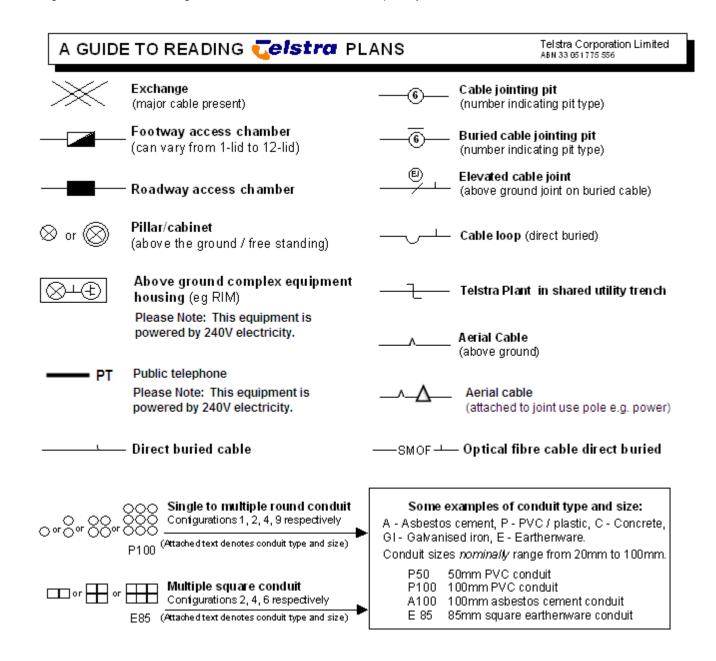
If plant location plans or visual location of Telstra plant by digging reveals that the location of Telstra plant is situated wholly or partly where the owner plans to work, then **Telstra's Network Integrity Group** must be contacted through Telstra **Plan Services** to discuss possible engineering solutions.

NOTE:

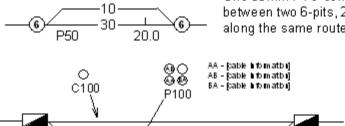
If Telstra relocation or protection works are part of the agreed solution, then payment to Telstra for the cost of this work shall be the responsibility of the principal developer or constructor. The principal developer or constructor will be required to provide Telstra with the details of their proposed work showing how Telstra's plant is to be accommodated and these details must be approved by the Regional Network Integrity Manager prior to the commencement of site works.

RURAL LANDOWNERS - IMPORTANT INFORMATION

Where Telstra owned cable crosses agricultural land, Telstra may provide a once off free on-site electronic cable location. The Telstra Plan Services operator will provide assistance in determining whether a free on-site location is required.


Please note:

- The exact location, including depth of cables can only be verified by pot holing, which is not covered by this service.
- This service is only available to assist private rural land owners.
- This service covers one hour on-site only. Additional time can be purchased directly from the Accredited Plant Locator.


For further information including terms and conditions, please contact Telstra Plan Services on phone 1800 653 935.

PRIVACY NOTE

Your information has been provided to Telstra by DBYD to enable Telstra to respond to your DBYD request. Telstra keeps your information in accordance with its privacy statement entitled "Protecting Your Privacy" which can be obtained from Telstra either by calling 1800 039 059 or visiting our website at www.telstra.com.au/privacy

Some examples of how to read Telstra plans:

- 50 -

One 50mm PVC conduit (P50) containing a 50-pair and a 10-pair cable between two 6-pits, 20.0m apart, with a direct buried 30-pair cable along the same route.

Two separate conduit runs between two footway access chambers (manholes) 245m apart. A nest of four 100mm PVC conduits (P100) containing assorted cables in three ducts (one being empty) and one empty 100mm concrete duct (C100) along the same route.

WARNING: Telstra's plans show only the presence of cables and plant. They only show their position relative to road boundaries, property fences etc. at the time of installation and Telstra does not warrant or hold out that such plans are accurate thereafter due to changes that may occur over time.

DO NOT ASSUME DEPTH OR ALIGNMENT of cables or plant as these vary significantly.

245.0

The customer has a DUTY OF CARE, when excavating near Telstra cables and plant. Before using machine excavators TELSTRA PLANT MUST FIRST BE PHYSICALLY EXPOSED BY SOFT DIG (potholing) to identify its location.

Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

Electronic plans - PDF and DWF maps

If you have received Telstra maps via email you will have received the maps as either a PDF file (for smaller areas) or DWF file (for larger area requests). If you are unable to launch any one of the softcopy files for viewing and printing, you may need to download and install one or more of the free viewing and printing products such as Adobe Acrobat Reader (for PDF files) or Autodesk Design Review 2010 (for DWF files) available from the internet.

PDF files

PDF is the default softcopy format for all requests that range in size from 0 metres (eg point requests) to requests up to approx *500m in length. (*depends on geographic location of request). The PDF file is formatted to A3 portrait sheet however it can be printed on any size sheet including from A4 to AO, either as the full sheet or selected areas to suit needs and legibility. (to print a selected area zoom up and print "current view"). If there are multiple layers of Telstra network you may receive up to 2 sheets in the single PDF file attachment supplied. There are three types or layers of network normally recorded - local network, mains cables or a combined layer of local and mains (usually displayed in rural or semi rural areas). If mains cable network is present in addition to local cables (ie as separate layer in a particular area), the mains will be shown on a separate sheet. The mains cable information should be read in conjunction with the local cable information.

DWF files

This is the default softcopy format for all requests that are over 500m in length. Maximum length for a DWF automated response is approx 2500m - depending on geographic location of request (non automated longer). The DWF files differ from PDF in that DWF are vector files made up of layers that can be turned on or off and are not formatted to a specific sheet size. This makes them ideal for larger areas and for transmitting over email etc.

How to view Telstra DWF files -

Telstra DWF files come with all layers turned on. You may need to turn individual layers on or off for viewing and printing clarity. Individual layer names are CC (main cable/conduit), DA (distribution or local area network) and sometimes a combined layer - CAC. Layer details can be viewed by either picking off the side menu or by selecting 'window' then 'layers' off the top menu bar. Use 'layers' to turn individual layers off or on. (double click or right click on layer icon.)

How to print Telstra DWF files -

DWF files can be printed on any size sheet. They can be printed in their entirety or by selected areas of interest. Some DWF coverage areas are large and are not suited to printing legibly on a single A4 sheet - you may need several prints if you only have an A4 printer. Alternately an A3, A1 or larger printer should be used. To print, zoom in or out and then by changing the 'print range' settings you can print what is displayed on your screen to suit your paper size. If you only have a small printer eg A4 you may need to zoom until the text legible on your screen for it to be legible on the print. (which is why you may need several prints). To print what is displayed on your screen the 'view' setting should be changed from 'full page' to 'current view'. The 'current sheet' setting should also be selected. You may need to print layers separately for clarity and legibility. (details above on how to turn layers on or off)

How to change the background colour from white to black (when viewing) Telstra DWF files -

If using Autodesk Design Review the background colour can be changed by selecting "Tools" then "options" then "sheet". Tick the box "override published paper colors" and select the colour required using the tab provided.

Further information

If you require further assistance with supplied PDF or DWF plans eg with legibility or you believe there maybe missing information please contact Telstra Plan Services. (contact details above - you will need to supply the Telstra sequence number of the plan request.)

Telstra automated plan service

Telstra provides an automated plan response for the majority of DBYD requests received (currently around 80%). Requestors must supply a current email address on their request to DBYD and must also be able to accept a standard format ie PDF or DWF. An automated response can be provided a lot faster than the alternative which is a mailed hardcopy. This can avoid unnecessary

delays in waiting for plans to arrive. Being softcopy it can easily be sent directly to a worksite and can be available 7 days a week. The automated system can be configured for individual requestors to receive either PDF/DWF (where small requests are PDF and larger requests are DWF) or alternately all in DWF (both small and large requests). Please contact Plan Services for further details or to be configured. Please note all requests over *500m (approx) in size can only be supplied in DWF format and there are size limits on what can be provided. (* actual size depends on geographic location of requested area)

Data Extraction Fees

In some instances a data extraction fee may be applicable for the supply of Telstra information. Typically a data extraction fee may apply to - large projects, requests to be suplied in non standard formats, excessive hardcopy printing or requests for non digging purposes. Further details can be obtained by contacting Telstra Plan Services.

ACCREDITED PLANT LOCATORS (For your area)

On-site assistance should be sought from an **Accredited Plant Locator** if the telecommunications plant cannot be located within 2.5 metres of the locations indicated on the drawings provided.

On-site advice should be obtained from a Telstra accredited Asset Plant Locator who is highly skilled in locating Telstra plant. In the case where Telstra plant is outside a recognised road reserve Telstra recommends that Telstra Plan Services are contacted for assistance prior to engaging an accredited Asset Plant Locator.

Telstra does not permit external parties (non-Telstra) to conduct work on our network. Only Telstra staff or Telstra contractors are allowed to enter our manholes, open our pits, ducts, etc.

Please note it is a criminal offence under the *Criminal Code Act 1995*(Cth) to tamper or interfere with communication facilities owned by a carrier. Heavy penalties may apply for breach of this prohibition, and any damages suffered, or costs incurred by Telstra as a result of any such unauthorised works may be claimed against you.

Should your projects require cable location, you MUST engage an accredited Asset Plant Locator (a list of which is provided with the Dial Before You Dig plans). Alternatively you may seek your own accreditation through our registered training partner Coates Hire Training which is the only approved training provider for Asset Plant Location accreditation for Telstra's network. You may contact Coates Hire Training on

1300 657 867 or visit www.coateshire.com.au

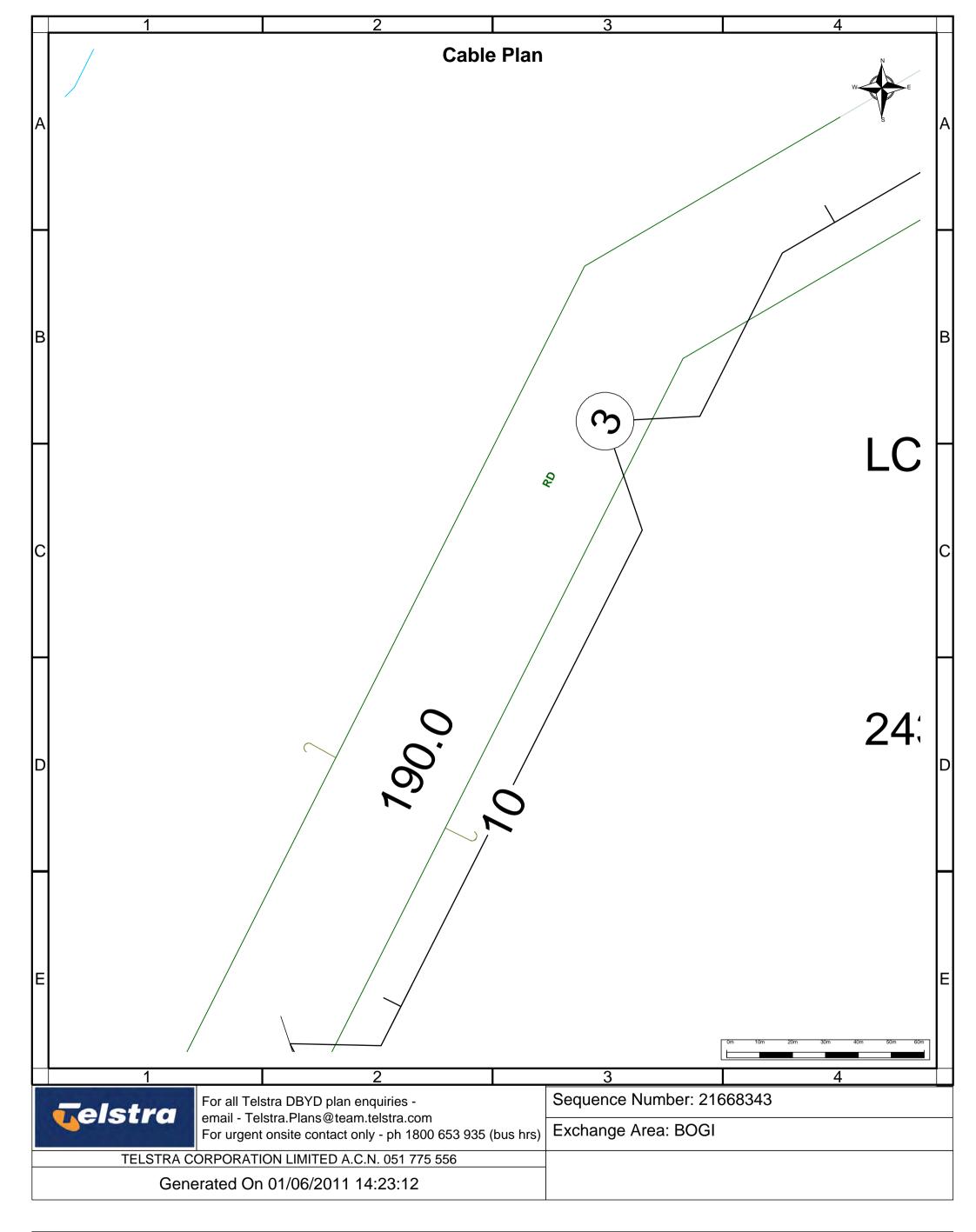
For the assistance of customers an accredited Asset Plant Locator can perform any of the following activities if requested to do so by the owner:

- review Telstra's plans to assess the approximate location of Telstra plant;
- advise owners of the approximate location of Telstra plant according to the plans;
- advise owners of the best method for locating Telstra plant;
- advise owners of the hazards of unqualified persons attempting to find the exact location of Telstra plant and working in the vicinity of Telstra plant without first locating its exact position; and
- perform trial hole explorations by hand digging (pot-holing) to expose Telstra plant with a high degree of skill, competence and efficiency and utilising all necessary safety equipment.

A list of Accredited Plant Locators operating in your area is attached. Accredited Plant Locators are certified by Telstra to perform the tasks listed above. Owners may engage Accredited Plant Locators to perform these services, however Telstra does not give any warranty in relation to these services that Accredited Plant Locators are competent or experienced to perform any other services.

The attached list provides the names and contact details for Accredited Plant Locators who service your area and can provide you with assistance in locating Telstra plant on site. These organisations have been able to satisfy Telstra that they have a sound knowledge of telecommunications plant and its sensitivity to disturbance; appropriate equipment for locating telecommunications plant and competent personnel who are able to interpret telecommunications plans and sketches and understand safety issues relevant to working around telecommunications plant. They are also able to advise you on the actions which should be taken if the work you propose will/could result in a relocation of the telecommunications plant and/or its means of support.

We recommend that you engage the assistance of one of these Accredited Plant Locators as a step towards discharging your Duty of Care obligations when seeking the location of Telstra's telecommunications plant.

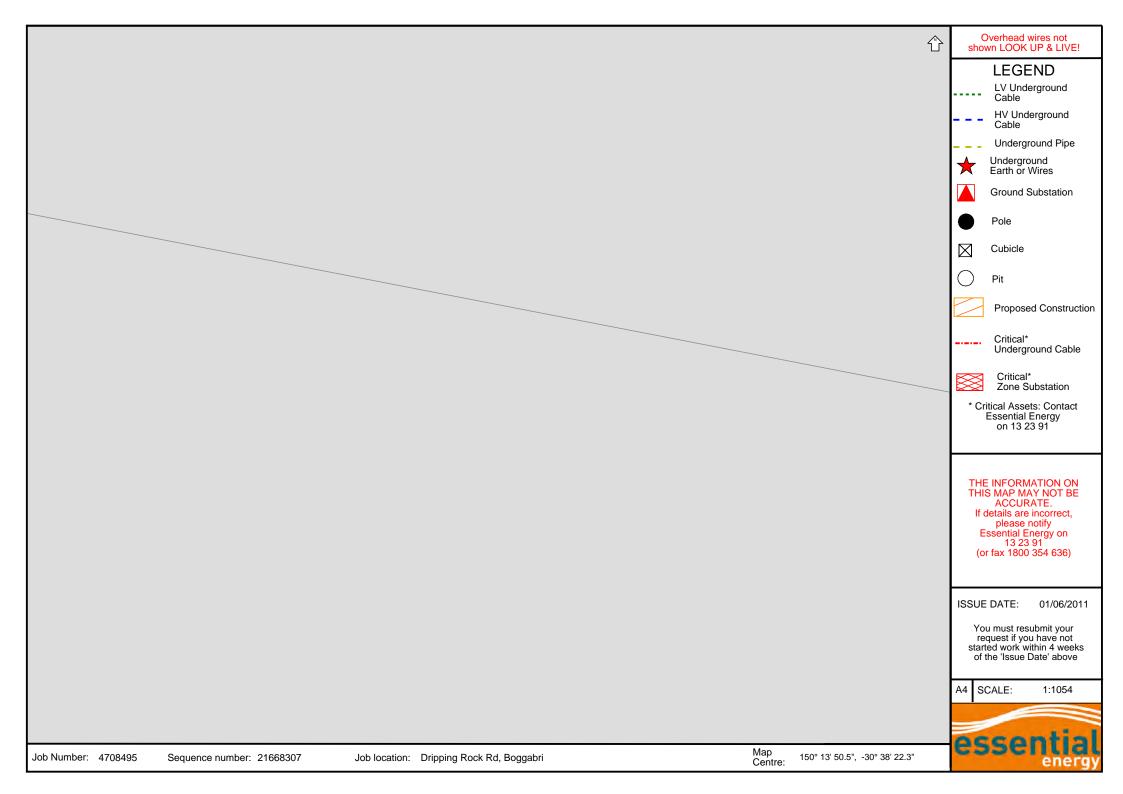

Please Note:

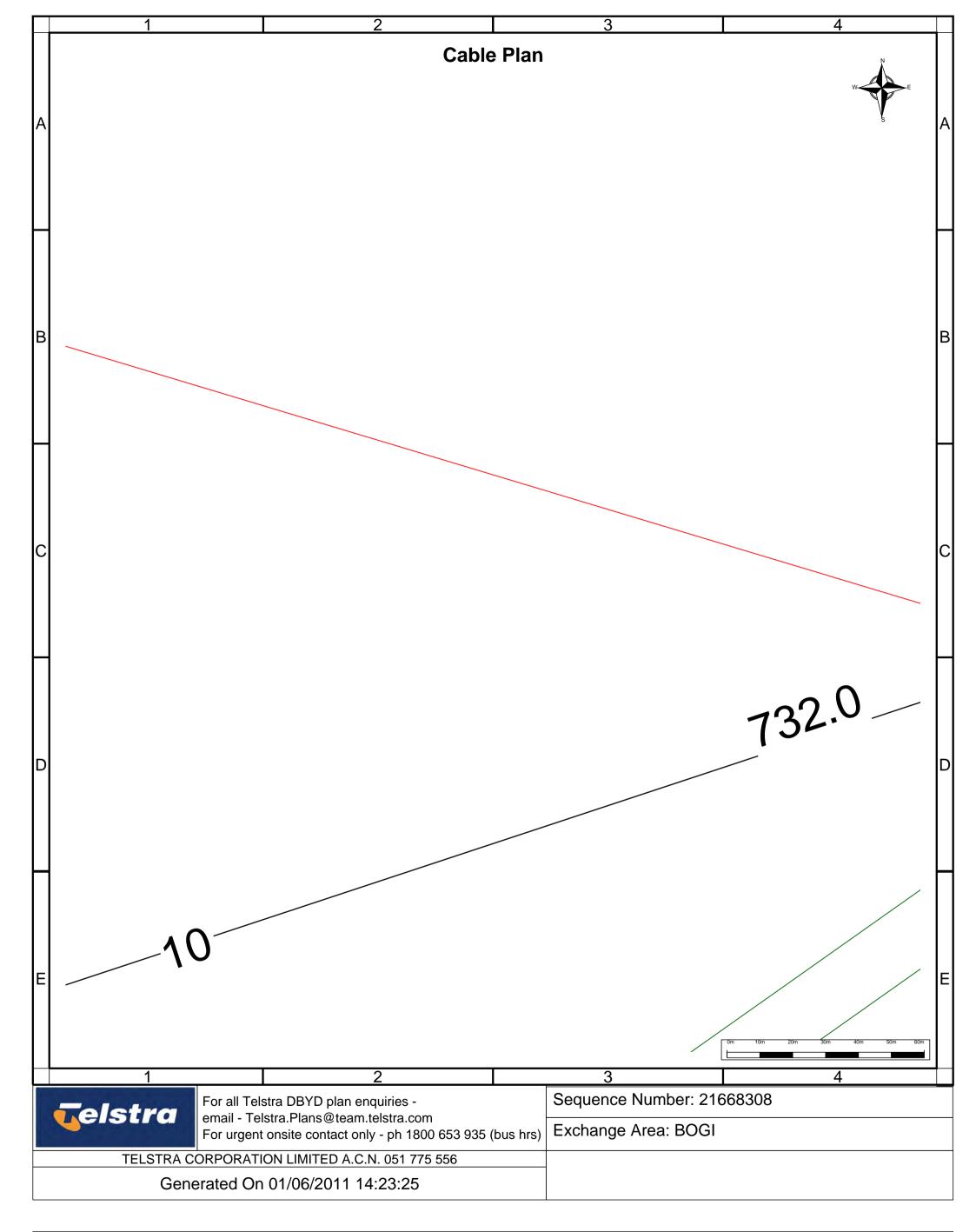
- Each Accredited Plant Locator is NOT permitted to provide depth of communications plant unless physically exposed by hand digging.
- The details of any contract, agreement or retainer for site assistance to locate telecommunications plant shall be for you to
 decide and agree with the organisation engaged. Telstra is not a party to any contract entered into between an owner and an
 Accredited Plant Locator. The Accredited Plant Locators are able to provide guidance concerning the extent of site
 investigations required.
- Payment for the site assistance will be your responsibility and payment details should be agreed before the engagement is confirmed.
- Telstra does not accept any liability or responsibility for the performance of or advice given by an Accredited Plant Locator.
 Accreditation is an initiative taken by Telstra towards the establishment and maintenance of competency standards.
 However, performance and the advice given will always depend on the nature of the individual engagement.
- Each Accredited Plant Locator has been issued with a certificate which confirms the Accreditation. Every 2 years Telstra will reassess the accreditation and where appropriate will issue a letter confirming the accreditation for the next 2 years. You

- have the right to request the organisation you engage to show evidence of their ID card.
- Neither the Accredited Plant Locator nor any of its employees are an employee or agent for Telstra and Telstra is not liable for any damage or loss caused by the Accredited Plant Locator or its employees.
- The attached list contains the current names and contact details of Accredited Plant Locators who service your area, however, these details are subject to change.

IDEA FOR CONSIDERATION:

Telstra offer free Cable Awareness Presentations & Advanced Cable Reading Presentations, if you believe you or your company would benefit from this offer please contact Network Integrity on 1800 810 442 or **F1102490@team.telstra.com**




WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

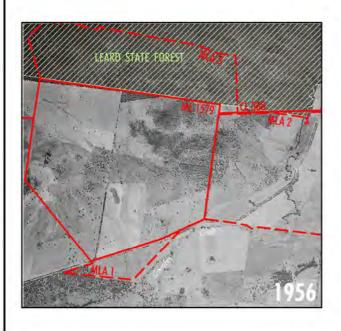
It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

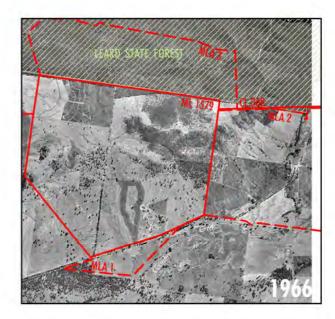
Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

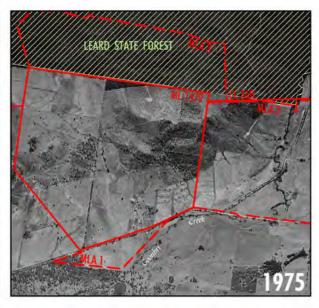
Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

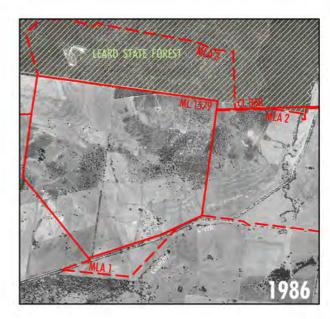
WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.


Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.


Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.




APPENDIX D

HISTORICAL PHOTOGRAPHS

1000

Source: Ortho -Geo-Spectrum Australia (Flown August 2010)
and Airphotos - Land & Propoerty Imformation (2011)
TARRAWONGA COAL PROJECT

Historic Photography

APPENDIX E

CALIBRATION CERTIFICATES

RENTALS

Equipment Report - MINIRAE 2000 PID

This PID has been perf	ormance checked / ca	librated*	as follows:									
Calibration	Actual Valu	ue	Reading	Pass?								
Zero – fresh air	0.0	ppm	0 • O ppm	<u> </u>								
Span – Isobutylene	100	ppm	103 ppm	<u>V</u>								
Set Alarm limits to	High		100 ppm	Low	50 ppm							
Operations Check												
Performance Ch	eck (pump, lamp, sens	or & batt	ery voltage che	eck)								
Battery Charged			Spare batt	tery Voltage (5	5.5v minimum) <table-cell></table-cell>	4 V						
_ر 3760)	Tag attached (AS/NZS	T	ag No:		Valid to:							
	Date: 10 6 11											
Calibration gas traceability information is available upon request. Date: RBLL Checked by: ROBERT Please check that the following items are received and that all items are cleaned and decontaminated before eturn. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.												
Sent Returne	MiniRae 2000 P Lamp Voltage @ Protective yellow Inlet probe (atta Spare water trap Charger 240V to Instruction Manu Quick Guide Sh Spare Alkaline E Inline Moisture t Calibration regu Carry Case Check to confirm	w rubber ched to F p filter(s) to 12V 500 ual behindet behindet behindet Filter lator & turn electrical	V Compound boot PID) Oty OmA d foam on the Id foam on the Ompartment wire Guide Lamina bing (optional) al safety (tag m	id of case " lid of case " th batteries ted	Voltage @ V C/factor:							
TFS Quote Reference Condition on return												
Customer Ref												
Equipment ID	PIDMIN21											
Equipment serial no.												
Return Date	1 1											
Return Time												
	"We do more than give yo	u great equ	ipment We give	e you great soluti	ons!"							

Phone: (Free Call) 13	00 735 295 Enviro	onmental Assessment Technologi	ies Fax: (Free	Call) 1800 675 123
Melbourne Branch	Sydney Branch	Adelaide Branch	Brisbane Branch	Perth Branch
5 Carlbbean Drive,	Level 1, 4 Talavera Road,	27 Beulah Road, Norwood,	Unit 2/5 Ross St	121 Beringarra Ave
Scoresby 3179	North Ryde 2113	South Australia 5067	Newstead 4006	Malaga WA 6090
Email: RentalsEnviroVIC@thermofisher.com	Email: RentalsEnviroNSW@thermofisher.com	Email: RentalsEnviroSA@thermofisher.com	Email: RentalsEnviroQLD@thermofisher.com	Email: RentalsEnviroWA@thermofisher.com
				_

RENTALS

EQUIPMENT CERTIFICATION REPORT

AMS SOIL SAMPLING AUGER KIT 70BA

This Sail Sa	mulina Vit haa haan al	aanad and chacl	rad:
Inis Son Sa	mpling Kit has been clo	eaned and check	CCU.
Date:	0/8/11	· · · · · · · · · · · · · · · · · · ·	
Checked by	: KOBERT		_
Signature:_	O/6/11 ROBERT RBLE		_
Please check	k that the following iter	ns are received	and all items are returned. Please clean equipment lies to any unclean or damaged items.
Sent	Received	Returned	Description
			1 Regular Auger Head 1 Clay Auger Head
			1 Sand Auger Head
			1 Tee Handle Qty extensions of 0.9 metre
			1 Finger Ring for disconnecting extensions
			1 canavas carry bag Screwdriver
			Screwdrue
			Processors Signature/ Initials
			CLIENT'S REF: P/O NO:
			CLIENT'S REF: Job NO:
QUOTE N	O.:		
ID:	AMS70BB		
RETURN I	DATE://_ TIME		

Phone: (Free Call) 1	300 735 295 En	vironmental Assessment Technolog	ies Fax: (F	ree Call) 1800 657 123
Melbourne Branch 5 Caribbean Drive, Scoresby 3179 Email: RentalsEnviroVIC@thermofisher.com	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113 Email: RentalsEnviroNSW@thermofisher.com	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5057 Email: RentalsEnvirosA@thermofisher.com	Brisbane Brench Unit 2/5 Ross St Newstead 4006 Email: RentalsEnviroQLD@thermofisher.c	Perth Branch 121 Beringaria Ave Malage WA 6090 Email: Renta SEnviroWA@thermofisher.com
T 2		Dec 00		

Issue 3

RENTALS

Equipment Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter h	nas been perfoi							
рН	M pH 6.88	8	∐ pH 7.00	pH 4.00)	□ pH 10.00	Пр	H
Conductivity	√ 0.0mS/	'cm	₩2.76mS/cm	∐12.88m	S/cm	□ 58.6mS/cm	11	mS/cm
TDS	√∫ 0.0 ppk	(√36 ppk	1.3	ppk			
Dissolved Oxygen	₩ 0.00pp	m in Sodiu	ım Sulphite			100% Satura	ition i	n Air
Redox (ORP)**	√ Electro	de operab	ility test 240mV	+/- 10%.	Actual:	24/ mV		
▼Electrodes cleaned/check	cked		☑Charged 🞖	🔑 v (min 7	.2V)	☑ Temperature	Э	
☐ Electrical Safety Tag att	ached (AS?NZ	S 3760)	Tag No:		V	alid To:		
* Calibration solution traceability								
Date: 12/7/11		C	necked by:	Rober	LT			
Signed: RBLT								
Please check that the follo return. A minimum \$20 cle Items not returned will be I	eaning / service billed for at the	e / repair c	harge may be ap	s are cleane oplied to an	ed and y uncle	decontaminated an or damaged	befoi items	re
	eturned	ltem	nit. Ops check	/ Rattery V	'oltane	@		
		pH sensor	•	(/ Daticity v	onage	·		
			ty / TDS / Temp			or 5m		
		Dissolved Redox (OF	Oxygen YSI5739 RP) sensor 5m	9 sensor on	1			
		Battery ch	arger: 240V AC	to 12V DC 2	200mA			
		Instruction						
		Quick Guid Syringe wi	ge th storage solution	on for pH &	ORP	sensors		
		Carry Cas		•				
Processors Signature/ Initia	ials							
TFS Quote Reference		Со	ndition on return					
Customer Ref								
Equipment ID	90FLMVBN) 		
Equipment serial no.	T7934							
Return Date	1 1	-						
Return Time	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
		<u>j</u>						

APPENDIX F

SOIL AND SURFACE WATER ANALYSIS RESULTS

Soil Results

Table 1 - Metals and BTEX Results

								Meta	ls						втех			ı	BTEXN	
ite	Sample ID	Date	H <u>.</u>	Moisture Content (dried @ 103°C)	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	Benzene	Toluene	Ethylbenzene	meta- & para- Xylene	ortho-Xylene	Sum of BTEX	Total Xylenes	-
TAGE 1																				
ite 1	BH1 (0.2)	15/06/2011	6.3	12.9	7	<1	24	<5	14	6	20	<0.1	-	-	-	-	-	-	-	-
te 1	BH1-2 (BH3 [0.5]*)	15/06/2011	6.6	29.3	<5	4	8	11	2720	9	1430	<0.1	-	-	-	-	-	-	-	-
te 1	BH2 (0.2)	15/06/2011	6.3	12.6	<5	<1	11	6	44	6	132	0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	•
te 1	BH2 (0.5)	15/06/2011	6.5	17.8	<5	<1	11	6	83	7	107	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 1	BH3 (0.2)	15/06/2011	6.8	44.5	6	2	15	9	1500	9	817	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 1	BH (0.2)	15/06/2011	6.6	14	<5	<1	8	6	25	7	164	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 1	BH5 (0.2)	15/06/2011	6.2	13.4	<5	<1	12	5	14	6	55	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 2	BH8 (0.2)	15/06/2011	6.4	22.1	<5	<1	19	5	25	7	12	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 2	BH8 (0.2)-D	15/06/2011	6.4	20.2	<5	<1	18	<5	20	7	13	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 3	BH6 (0.2)	15/06/2011	6	18.9	<5	<1	26	<5	11	4	8	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	
te 3	BH7 (0.2)	15/06/2011	6.1	11.7	<5	<1	10	<5	6	4	6	<0.1	-	-	-	-	-	-	-	-
te 4	BH9 (0.2)	15/06/2011	9.8	20.7	<5	<1	10	6	16	7	12	<0.1	-	-	-	-	-	-	-	-
ite 5	TP4 (0.2)	14/07/2011	6.6	13.3	6	<1	16	10	15	11	72	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 6	TP5 (0.5)	14/07/2011	-	9.7	<5	<1	16	<5	8	5	12	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 7	TP6 (0.2)	14/07/2011	-	11.6	6	<1	17	14	12	10	49	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 7	TP6-1 (0.5)	14/07/2011	-	12.9	6	<1	16	14	12	13	45	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 7	TP6-2 (0.5)	14/07/2011	-	15.4	6	<1	17	14	10	15	38	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 7	BH1-1 (0.5)	14/07/2011	5.8	10.1	<5	<1	14	12	21	8	128	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 8	BH2-1 (0.1)	14/07/2011	7.9	9.4	<5	<1	9	13	10	6	132	-	-	-	_	-	_	-	-	_
	d BH10 (0.2)	15/06/2011	5.8	12.8	<5	<1	10	<5	8	5	9	<0.1	-	-	-	-	-	-	-	-
TAGE 2	· · ·																			
ite 1	TP1 (1.0)	14/07/2011	7.4	5.7	5	<1	10	<5	74	5	104	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 1	TP2 (0.2)	14/07/2011	6.4	4.8	5	<1	10	6	16	6	18	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
ite 1	TP2 (2.0)-Q	14/07/2011	7.1	5.5	5	<1	9	<5	68	5	30	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
te 1	TP3 (0.5)	14/07/2011	6.9	4.7	<5	<1	8	<5	11	5	24	<0.1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<
	LOR	, , ,	0.1	1	5	1	2	5	5	2	5	0.1	-	_	-	_	_	-	-	_
EPM HIL-E					200	40	200	2000	600	600	14000	30								
EPM HIL-F					500	100	500	5000	1500	3000	35000	75								
SEPA Indu																				
														130						

^{*}This sample was mislabelled BH1-2 and was actually collected at 0.5 m at location 3 and therefore should have been labelled BH3 (0.5)

Table 2 - Organochlorine Pesticides Results

								O	rganochl	orine Pes	sticides (OC)												
Site	Sample ID	Date	alpha-BHC	Hexachlorobenze ne (HCB)	beta-BHC	gamma-BHC	delta-BHC	Heptachlor	Aldrin	Heptachlor epoxide	trans-Chlordane	alpha-Endosulfan	cis-Chlordane	Dieldrin	4.4`-DDE	Endrin	beta-Endosulfan	4.4`-DDD	Endrin aldehyde	Endosulfan sulfate	4.4`-DDT	Endrin ketone	Methoxychlor	Sum of DDT, DDD & DDE
STAGE 1																								
Site 3	BH6 (0.2)	15/06/2011	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.2	< 0.05	<0.2	<0.12
Site 3	BH7 (0.2)	15/06/2011	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.2	< 0.05	<0.2	<0.12
Site 4	BH9 (0.2)	15/06/2011	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.2	< 0.05	<0.2	< 0.12
Site 8	BH2-1 (0.1)	14/07/2011	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.2	<0.05	<0.2	-
Backgroun	d BH10 (0.2)	15/06/2011	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.2	<0.05	<0.2	<0.12
	LOR		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.2	-
NEPM HIL-								20	20				100											400
NEPM HIL-								50	50				250											1000
USEPA Indu	ıstrial																							
OEH																								

Table 3 - Organophosphorous Pesticides Results

							Organo	phosphor	us Pestic	ides (OP)											
Site	Sample ID	Date	Dichlorvos	Demeton-S-methyl	Monocrotophos	Dimethoate	Diazinon	Chlorpyrifos-methyl	Parathion-methyl	Malathion	Fenthion	Chlorpyrifos	Parathion	Pirimphos-ethyl	Chlorfenvinphos	Bromophos-ethyl	Fenamiphos	Prothiofos	Ethion	Carbophenothion	Azinphos Methyl
STAGE 1	DUG (0.2)	45 /05 /2044	-0.05	.0.05	.0.2	.0.05	.0.05	.0.05	.0.2	.0.05	-0.05	.0.05	.0.2	.0.05	-0.05	-0.05	-0.05	.0.05	.0.05	-0.05	-0.05
Site 3	BH6 (0.2)	15/06/2011	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Site 3	BH7 (0.2)	15/06/2011	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Site 4	BH9 (0.2)	15/06/2011	<0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	<0.2	<0.05	<0.05	<0.05	<0.2	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
Site 8	BH2-1 (0.1)	14/07/2011	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Background	BH10 (0.2)	15/06/2011	< 0.05	< 0.05	<0.2	< 0.05	< 0.05	< 0.05	<0.2	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	LOR		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NEPM HIL-E																					
NEPM HIL-F																					
USEPA Indus	trial																				
OEH			5.9	25		120	430	6200		12000		1800	3700	6200			150		310		

Table 4 - Polynuclear Aromatic Hydocarbon Results

									Polynu	clear Aro	matic Hy	drocarbo	ns						
Site STAGE 1	Sample ID	Date	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno (1.2.3.cd) pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Sum of polycyclic aromatic hydrocarbons
Site 1	BH2 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 1	BH2 (0.5)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 1	BH3 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 1	BH4 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 1	BH5 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 2	BH8 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 2	BH8 (0.2)-D	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 3	BH6 (0.2)	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	LOR		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NEPM HIL-	E														2				40
NEPM HIL-	·F														5				100
USEPA Ind	ustrial																		
OEH																			

Table 5 - Total Petroleum Hydrocabons Results

				То	tal Petrole	eum Hydr	ocarbons		Total	Recoverable	e Hydrocar	bons - NE	PM 2010 I	Oraft
Site	Sample ID	Date		C6 - C9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 Fraction (sum)	C6 - C10 Fraction	Fraction minus BTEX (F1)	>C10 - C16 Fraction	>C16 - C34 Fraction	>C34 - C40 Fraction	>C10 - C40 Fraction (sum)
Site 1	BH2 (0.2)		15/06/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 1	BH2 (0.5)		15/06/2011	<10	<50	470	140	610	<10		<50	520	130	650
Site 1	BH3 (0.2)		15/06/2011	<10	<50	750	420	1170	<10	<10	70	960	380	1410
Site 1	BH4 (0.2)		15/06/2011	<10	<50	250	<100	250	<10	<10	<50	280	<100	280
Site 1	BH5 (0.2)		15/06/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 2	BH8 (0.2)		15/06/2011	<10	<50	200	<100	200	<10	<10	<50	210	<100	210
Site 2	BH8 (0.2)-D		15/06/2011	<10	<50	120	<100	120	<10	<10	<50	140	<100	140
Site 3	BH6 (0.2)		15/06/2011	<10	<50	180	<100	180	<10	<10	<50	190	<100	190
Site 5	TP4 (0.2)		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 6	TP5 (0.5)		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 7	TP6 (0.2)		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 7	BH1-1 (0.5)		14/07/2011	<10	<50	360	<100	360	<10	<10	<50	330	<100	330
STAGE 2														
Site 1	TP1-1.0		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 1	TP2-0.2		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 1	TP2 (2.0)-Q		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
Site 1	TP3-0.5		14/07/2011	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50
	LOR			10	50	100	100	50	10	10	50	100	100	50
NEPM HIL-E														
NEPM HIL-F														
USEPA Indus	strial													
OEH				65				1000						

Surface Water Results

Table 6 - Metals Results

rabie 6 - ivi	letais Results																					
										Metals												
Site	Sample ID	Date	pH Value	Electrical Conductivity @ 25°C	Total Dissolved Solids @180°C	Total Arsenic	Dissolved Arsenic	Total Cadmium	Dissolved Cadmium	Total Chromium	Dissolved Chromium	Total Copper	Dissolved Copper	Total Nickel	Dissolved Nickel	Total Lead	Dissolved Lead	Total Zinc	Dissolved Zinc	Total Mercury	Dissolved Mercury	Dissolved Oxygen
			pH Unit	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
STAGE 1	D1 /Dinasta samula)	15/06/2011	_			40.001		<0.0001		<0.001		0.001		<0.001		<0.001		<0.005		<0.0001		_
C:+ - 4	R1 (Rinsate sample)			- 450	-	<0.001	-				-		-		-		-		-			
Site 4	D1	15/06/2011	7.15	158	564	0.002	-	<0.0001	-	0.004	-	0.006	-	0.005	-	0.004	-	0.012	-	<0.0001		7.2
Site 4	D2	15/06/2011	7.42	221	371	0.006	-	<0.0001	-	0.007	-	0.006	_	0.011	-	0.006		0.021	-	<0.0001	-	8
Site 4	D3	15/06/2011	7.98	334	1420	0.01	-	<0.0001	-	0.016	-	0.009		0.018	-	0.012	-	0.035	-	< 0.0001	-	9
Site 9	D4	14/07/2011	7.5	481	277	-	< 0.001	-	<0.0001	-	< 0.001	-	0.003	-	0.003	-	< 0.001	-	< 0.005	-	< 0.0001	8.4
Site 9	D5	14/07/2011	7.6	280	157	-	0.001	-	< 0.0001	-	< 0.001	-	0.002	-	0.002	-	< 0.001	-	< 0.005	-	< 0.0001	8.32
Site 9	Q-D4	14/07/2011	-	-	-	-	0.001	-	< 0.0001	-	< 0.001	-	0.003	-	0.003	-	< 0.001	-	< 0.005	-	< 0.0001	-
STAGE 2												_										
Site 4	D1	14/07/2011	6.49	114.7	62.3		0.001	-	<0.0001	-	< 0.001	-	0.004	-	0.002		< 0.001		<0.005	-	-	4.2
Site 4	D2	14/07/2011	7.69	189.7	105.7	-	0.002	-	< 0.0001	-	0.001	-	0.005	-	0.003		< 0.001	-	0.008	-	-	9.12
Site 4	D3	14/07/2011	7.04	359	200	-	0.008	-	0.0004	-	< 0.001	-	0.003	-	0.002	-	< 0.001	-	0.005	-	-	8.35
	LOR		0.01	1	5	0.001		0.0001		0.001		0.001		0.001		0.001		0.005		0.0001		0.1
ANZACC 90%	protection					0.042		0.0004		0.006		0.0018		0.013		0.0056		0.015		0.0019		
NSW Namoi F	River Lowland River		6.5-8.5	125-2200																		

Table 7 - Organochlorine Pesticide Results

	iornie i esticiae i								Organo	chlorine I	Pesticides	(OC)											
Site	Sample ID	Date	الع-Adha-BHC	Hexachlorobenzen 가 e (HCB)	٦/ peta-BHC	J gamma-BHC J ^{ga}	η/gμ delta-BHC	٦/ Heptachlor	μg/L	Heptachlor 7/ epoxide	الالالالالالالالالالالالالالالالالالال	العollan اع alpha-Endosulfan	ا/و/ع العربارك cis-Chlordane	μg/L pieldrin	ո/ ^{8π} 7/ 4.4`-DDE	ηg/L Endri i	n beta-Endosulfan	ր ^{8/} ۲ 4.4`- DDD	T/ ^g h T/Bhyde	7 Endosulfan sulfate	πg/L 4.4`-DDT	က T Endrin ketone	ղ/ ⁸ m T/ Methoxychlor
STAGE 1	R1	15/06/2011	_	_	_	-	-	_	-	-	_	_	-	-	-	-	-	_	-	-	_	_	_
Site 4	D1	15/06/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Site 4	D2	15/06/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<2
Site 4	D3	15/06/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Site 9	D4	14/07/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<2
Site 9	D5	14/07/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<2
Site 9	Q-D4	14/07/2011	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<0.5	<2
	LOR		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	0.5	2
ANZACC 90% protection	1							0.00025								0.00005							

Table 8 - Organophosphorous Pesticide Results

								Organo	phospho	rous Pesti	cides										
Site	Sample ID	Date	μg/L	βπ Demeton-S- γ/ methyl	η/βα Monocrotophos	ارک T/قتا	μg/L	Chlorpyrifos- 7/ methyl	제 기 Parathion-methyl	Malathion γ/βπ	٦/F Fenitrothion	η/gm T/Chlorpyrifos	٦/B Aparathion	յուր Դնուր Pirimphos-ethyl	/s/ T/Shlorfenvinphos	الا Bromophos-ethyl	ηg/L	ηg/L Prothiofos	Ethion μg/L	Carbophenothio 7/8 ⁿ	지원 가 Azinphos Methyl
STAGE 1			P-6/ -	P-8/ -	P-6/ -	P-6/ -	P-0/ -	P-0/ -	P-6/ -	P-6/ -	P-6/ -	P-6/ -	P-6/ -	P-0/ -	P-6/ =	P-6/ -	P-6/ -	P*6/ -	P-6/ -	P-6/ -	F-8/ -
	R1	15/06/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Site 4	D1	15/06/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Site 4	D2	15/06/2011	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 4	D3	15/06/2011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Site 9	D4	14/07/2011	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 9	D5	14/07/2011	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Site 9	Q-D4	14/07/2011	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	LOR		0.5	0.5	2	0.5	0.5	0.5	2	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ANZACC 90% protection				ID		0.0002	0.0002			0.0002	0.0003	0.11	0.0001								

Table 9 - Nitrogen

Tuble 5 With Oge		Nitrogen			
Site	Sample ID	Date	Total Kjeldahl Nitrogen	Nitrite & Nitrate	Total Nitrogen
			mg/L	mg/L	mg/L
STAGE 1					
Site 4	D1	14/07/2011	4.6	0.11	4.7
Site 4	D2	14/07/2011	3.8	0.1	3.9
Site 4	D3	14/07/2011	1.5	0.42	1.9
Site 9	D4	14/07/2011	0.8	0.27	1.1
Site 9	D5	14/07/2011	1.1	0.46	1.6
Site 9	Q-D4	14/07/2011	0.7	0.26	1
	LOR		0.1	0.01	0.1
ANZACC 90% protec			3.4*		
NSW Namoi River Lo	owland River			0.35	
* nitrate only					

Table 10 - Alkalinity

	Table 10 - Alkallinty							
		Alkalinity						
Site	Sample ID	Date	Hydroixide Alkalinity	Carbonate Alkalinity	Bicarbondate Alkalinity	Total Alkalinity		
			mg/L	mg/L	mg/L	mg/L		
STAGE 1								
Site 4	D1	14/07/2011	<1	<1	57	57		
Site 4	D2	14/07/2011	<1	<1	56	56		
Site 4	D3	14/07/2011	<1	<1	169	169		
Site 9	D4	14/07/2011	<1	<1	97	97		
Site 9	D5	14/07/2011	<1	<1	100	100		
Site 9	Q-D4	14/07/2011	<1	<1	97	97		
	LOR		1	1	1	1		
ANZACC 90% protection								

Table 11 - Major Cations & Sulfate, Chloride

Major Cations & Sulfate, Chloride								
Site	Sample ID	Date	Calcium	Magnesiu m	Sodium	Potassium	Sulfate	Chloride
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
STAGE 1								
Site 4	D1	14/07/2011	2	4	30	12	16	17
Site 4	D2	14/07/2011	2	2	39	5	9	22
Site 4	D3	14/07/2011	4	9	75	5	18	11
Site 9	D4	14/07/2011	12	6	68	10	26	60
Site 9	D5	14/07/2011	9	6	31	14	3	14
Site 9	Q-D4	14/07/2011	12	6	70	11	26	63
	LOR		1	1	1	1	1	1
ANZACC 90% protec	tion							

APPENDIX G

LABORATORY DOCUMENTATION

Chain of Custody

lloyd consulting

Laboratory Details Lab Quote Ref. BN / 299 / 10 Ph:07:3213.7222 Email: samples.brisbane@alserviro.com TURNAROUND REQUIREMENTS: FOR LABORATORY USE ONLY (Circle) Standard TAT (List due date): CLIENT: Lloyd Consulting OFFICE: 30 Heather Street, Wilston, Q, 4051. Non Standard or urgest TAT (List due date): Custody Seal Infact? MΑ Free ice / frozen ice bricks present upon BN/299/10 COC SEQUENCE NUMBER (Circle) MΑ QUOTE NO .: PROJECT: receipt? ٠c coc. 1 2 3 4 5 6 7 Random Sample Temperature on Receipt: ORDER NUMBER: Trevor Lloyd CONTACT PH: 07 3352 7300 Other comment PROJECT MANAGER: RECEIVED BY: RECEIVED BY: RELINQUISHED BY: SAMPLER MOBILE: (1)/1 RELINQUISHED BY: SAMPLER: San EDD FORMAT (or default) COC emailed to ALS? { YES / DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: Email Reports to (PM firstname)@lloydconsulting.com.au; 12200 Email Invoice to (as above) COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be fisted to attract suite price) SAMPLE DETAILS Additional information ALS USE ONLY CONTAINER INFORMATION MATRIX: Solid(S) Water(W) Where fartals are required, specify Total (unfiltered bothe required) or Dissolved (field filtered bothe required). Comments on likely contaminant levels, dilutions, or samples requiring specific QC 3 analysis etc. Ô HEO HOLL TYPE & PRESERVATIVE TOTAL LABID SAMPLEID DATE / TIME MATRIX Netalk 90 Job BOTTLES (refer to codes below) \times 11 X \succ 11 Ш × **Environmental Division** 11 Sydney 5 X 11 Work Order \times × 11 ES1112949 X ١, \times g ١, a 11 \times 11 10 Telephone: +61-2-8784 8555 1.4 .12 ** Oi

Water Container Codes: P = Unpreserved Plastic, N = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic Preserved Plastic, N = Videous Plastic, N = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic, ORC = Nitric Preserved Plastic, N = VOA Vial Solituric Preserved Plastic, N = VOA Vial Solituric Preserved Plastic, P = Formaldehyde Preserved Glass; N = HCt preserved Plastic, HS = HCt preserved Speciation bottle; SP = Sulfuric Preserved Plastic, F = Formaldehyde Preserved Glass; N = Videous Plastic, HS = HCt preserved Plastic, HS = HCt preserved Speciation bottle; SP = Sulfuric Preserved Plastic, F = Formaldehyde Preserved Glass; N = Videous Plastic, HS = HCt preserved Plastic, HS = HCt preserved Speciation bottle; SP = Sulfuric Preserved Plastic, F = Formaldehyde Preserved Glass; N = Videous Plastic, HS = HCt preserved Plastic, HS = HCt preserved Speciation bottle; SP = Sulfuric Preserved Plastic, F = Formaldehyde Preserved Glass; N = Videous Plastic, HS = HCt preserved Plastic, HS = HCt preserved Speciation bottle; SP = Sulfuric Preserved Plastic, F = Formaldehyde Preserved Glass; N = Videous Plastic, HS = HCt preserved Plastic, HS = HCt preserved Plastic, HS = HCt preserved Plastic, N = Videous Plastic, N = Videous Plastic, V = Videous Plastic, V

Chain of Custody

ilaydcansulting

•	— nayacunsunung	•
Laboratory Details	ALSONE SYDNEY.	
Lab Quote Ref.	0	
BN / 299 / 10	Ph 07 3243 7222	
	Frankli samuelan belahan a Dela samina sam	

CLIENT:	Lloyd Consulting		TURNARC	OUND REQUIREMENTS: Stan	dard TAT (Us	st due date):_			······································		FO	R LABORATO	RY USE O	NLY (Circle)		
OFFICE:	30 Heather Street, Wilston, Q, 4051	•		Non-	Standard or u	rgent TAT (Li	TAT (List due date):					ody Seal Intacl?		Yes	No	N¦A
PROJECT:	11-719.		QUOTE NO	D.: BN/299/10	/			COC SEQUI	ENCE NUMBE	R (Circle)	Free	ice / frozen ice t ipt?	oricks presen	tupon Yes	No	N/A
ORDER NUMBER:							coc	1 2	3 4	5 6	7 Rand	dom Sample Ten	nperature on	Recept:	·c	
PROJECT MANAGER:	TREVOR LLE	CONTACT F		•	<u></u>		QF:	1 2	3 4	6 6	7 Othe	r comment:				
SAMPLER:	114 =	SAMPLER N	OBILE: ()	410068796 RELINQUI	SHED BY:		RECI	EIVED BY:			RELINQU	ISHED BY:		RECEIVED BY:		
COC emailed to ALS? (YES I (NO)	EDD FORM	T (or defau	·····	1 Cl	<u>C</u>								Sam		
Email Reports to (PM	firstname)@lloydconsulting.com.a	u;		DATE/TIM	E		DATE	E/TIME;	سی د د د	• '	DATE/TIN	E		DATE/TIME:		
Email involce to (as abo	ve) leona (a)	lloyacons	WHI	ng. com.au 15.6	<u> </u>			α	.45	,				17/6/11	1.7	00
COMMENTS/SPECIAL H	HANDLING/STORAGE OR DISPOSA		,	0											•	
ALS USÉ ONLY		E DETAILS lid(S) Water(W)		CONTAINER INFORMATION	i	Į			_			isted to attract su ad filtered bottle rec		Additional In	formation	
.:						7	2						•	Comments on likely conta dilutions, or samples requ analysis etc.		
						$ \infty $	- F				pH,			anaysia etc.		
				TYPE & PRESERVATIVE	TOTAL	7	7.	-010			o_	1.0				
, LAB ID	SAMPLE ID	DATE / TIME	MATRIX	(refer to codes below)	BOTTLES	tals	BES	16	.50		3					
						7	1	1/1	al	É	122	1				
						2	The s	O	Merals	octobs	200	8 0				
						~		1	. ~	0	W ~					
13	DH10-1		2		1	X	*	×	······································	······································		$ \lambda $				
14	RI		$ \mathcal{W} $		1	\times										
14	DI	,	3√		3				X	6 54VN	×	×				
6	D2		W		3				X	<u> </u>	X	X				
17	DZ		W		3		•			N. K.	\/	X				
	עע		'		_ ر				\times	MAN	_X_	1				
					<u> </u>											
														-		
				•										-		
	· · · · · · · · · · · · · · · · · · ·				ļ	,										
				• *										<u> </u>		
				TOTAL											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Water Container Codes: P	= Unpreserved Plastic; N = Nifric Preserve	d Plastic, ORC = Nitric Preserved	ORC; SH = S	odium Hydroxide/Cd Preserved, S = Sodium H	ydroxide Prese	erved Plastic, A	G = Amber G	lass Unprese	ved, AP - Airfr	eight Unpres	erved Plastic	: a Chromomoral Place		auklahuda Dracagrad Glass		

| Water Container Codes: P = Unpreserved Plastic, N = Nifric Preserved Plastic, NC = Nifric Preserved Plastic, NC = Nifric Preserved Plastic, N = Sodium Hydroxide/CD Preserved, S = Sodium Hydroxide/Preserved Plastic, AG = Amber Glass; Unpreserved Plastic, N = HCl preserved Plastic, Preserved Plast

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Food/Pharmaceutical Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1112949** Page : 1 of 21

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney

Contact : TREVOR LLOYD Contact : Client Services

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WILSTON QLD, AUSTRALIA 4057

Facsimile : ---- Facsimile : +61-2-8784 8500

Project : 11-719 Quote number : BN/299/10

Order number : ----

No. of samples received : 17-JUN-2011

No. of samples analysed : 17 Issue Date : 27-JUN-2011

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825/14610

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics
Celine Conceicao	Spectroscopist	Sydney Inorganics
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Phalak Inthaksone	Organics Co-ordinator	Sydney Organics
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics
Wisam Marassa	Metals Coordinator	Sydney Inorganics

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 3 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

General Comments

The analytical procedures used by the Food and Pharmaceutical Division have been developed from established internationally recognized procedures such as those published by the BP, USP, FCC and AOAC. In house developed procedures are employed in the absence of documented standards or by client request.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- EG-005T:LCS recovery for Chromium & Nickel falls outside ALS Dynamic Control Limit. However, they are within the acceptance criteria based on ALS DQO. No further action is required.
- EG020A-T: Positive results for sample ES1112949 # 014 have been confirmed by redigestion and reanalysis
- TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper. (Confirmed by re-analysis).

Page : 4 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Page : 5 of 21 Work Order : ES1112949

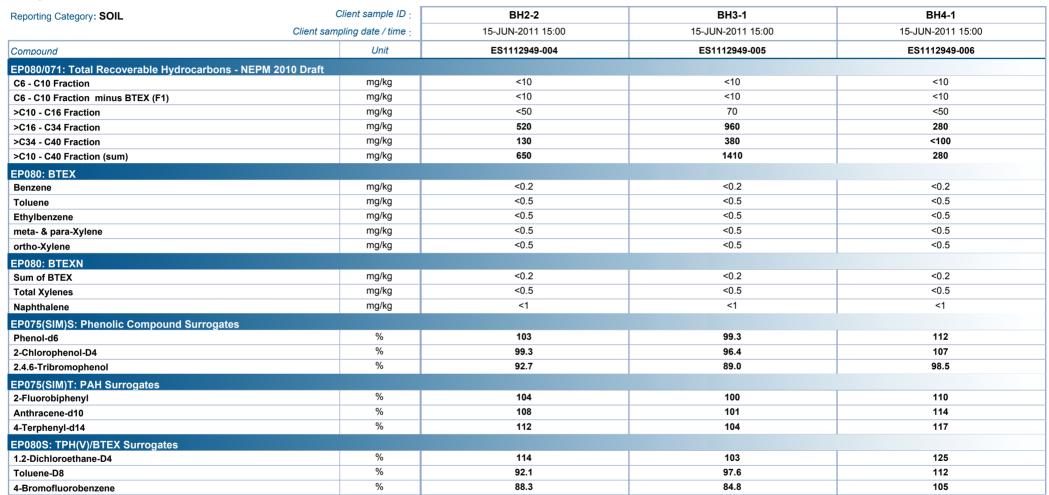
Client : LLOYD CONSULTING

Project : 11-719

Reporting Category: SOIL	Client sample ID :	BH1-1	BH1-2	BH2-1
Client s	ampling date / time :	15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00
Compound	Unit	ES1112949-001	ES1112949-002	ES1112949-003
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft				
C6 - C10 Fraction	mg/kg			<10
C6 - C10 Fraction minus BTEX (F1)	mg/kg			<10
>C10 - C16 Fraction	mg/kg			<50
>C16 - C34 Fraction	mg/kg			<100
>C34 - C40 Fraction	mg/kg			<100
>C10 - C40 Fraction (sum)	mg/kg			<50
EP080: BTEX				
Benzene	mg/kg			<0.2
Toluene	mg/kg			<0.5
Ethylbenzene	mg/kg			<0.5
meta- & para-Xylene	mg/kg			<0.5
ortho-Xylene	mg/kg			<0.5
EP080: BTEXN				
Sum of BTEX	mg/kg			<0.2
Total Xylenes	mg/kg			<0.5
Naphthalene	mg/kg			<1
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	%			101
2-Chlorophenol-D4	%			97.2
2.4.6-Tribromophenol	%			86.0
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	%			103
Anthracene-d10	%			102
4-Terphenyl-d14	%			108
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	%			130
Toluene-D8	%			94.1
4-Bromofluorobenzene	%			91.7

Page : 6 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING


Project : 11-719

Page : 7 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING


Project : 11-719

Page : 8 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Page : 9 of 21 Work Order · ES1112949

: LLOYD CONSULTING Client

Project : 11-719

Page : 10 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

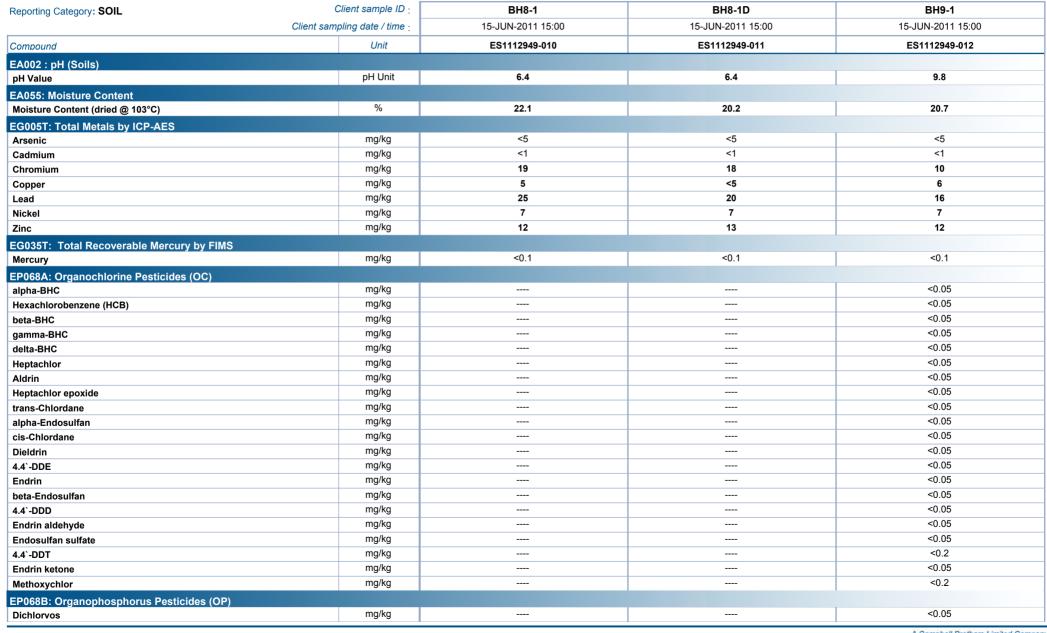
ALS

Reporting Category: SOIL	Client sample ID :	BH5-1	BH6-1	BH7-1
Client sam	pling date / time :	15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00
Compound	Unit	ES1112949-007	ES1112949-008	ES1112949-009
EP080/071: Total Petroleum Hydrocarbons				
C6 - C9 Fraction	mg/kg	<10	<10	
C10 - C14 Fraction	mg/kg	<50	<50	
C15 - C28 Fraction	mg/kg	<100	180	
C29 - C36 Fraction	mg/kg	<100	<100	
C10 - C36 Fraction (sum)	mg/kg	<50	180	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2010 Draft				
C6 - C10 Fraction	mg/kg	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10	<10	
>C10 - C16 Fraction	mg/kg	<50	<50	
>C16 - C34 Fraction	mg/kg	<100	190	
>C34 - C40 Fraction	mg/kg	<100	<100	
>C10 - C40 Fraction (sum)	mg/kg	<50	190	
EP080: BTEX				
Benzene	mg/kg	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	
Ethylbenzene	mg/kg	<0.5	<0.5	
meta- & para-Xylene	mg/kg	<0.5	<0.5	
ortho-Xylene	mg/kg	<0.5	<0.5	
EP080: BTEXN				
Sum of BTEX	mg/kg	<0.2	<0.2	
Total Xylenes	mg/kg	<0.5	<0.5	
Naphthalene	mg/kg	<1	<1	
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	%		87.7	91.0
EP068T: Organophosphorus Pesticide Surrogate				
DEF	%		103	88.5
EP075(SIM)S: Phenolic Compound Surrogates				
Phenol-d6	%	104	94.4	
2-Chlorophenol-D4	%	98.3	89.8	
2.4.6-Tribromophenol	%	92.0	84.2	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	%	104	98.9	
Anthracene-d10	%	104	99.2	
4-Terphenyl-d14	%	110	104	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	%	125	121	
				l

Page : 11 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

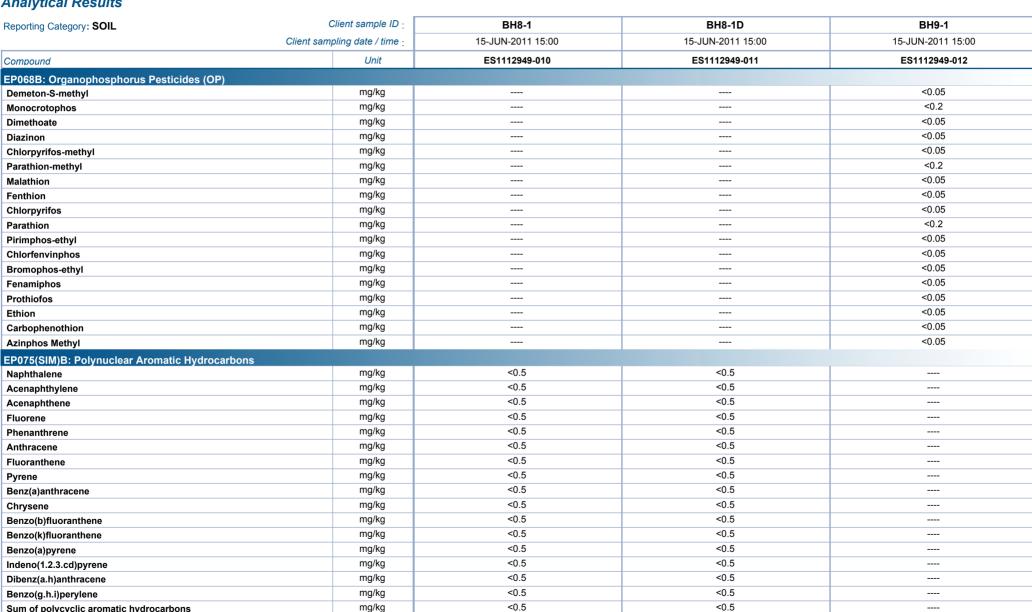

ALS

Reporting Category: SOIL	Client sample ID :	BH5-1	BH6-1	BH7-1		
Client sampling date / time :		15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00		
Compound	Unit	ES1112949-007	ES1112949-008	ES1112949-009		
EP080S: TPH(V)/BTEX Surrogates						
Toluene-D8	%	103	88.5			
4-Bromofluorobenzene	%	99.2	91.7			

Page : 12 of 21 · ES1112949 Work Order

: LLOYD CONSULTING Client

Project : 11-719



Page : 13 of 21 · ES1112949 Work Order

Sum of polycyclic aromatic hydrocarbons

: LLOYD CONSULTING Client

Project : 11-719

Page : 14 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Page : 15 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS

orting Category: SOIL Client sample ID :		BH8-1	BH8-1D	BH9-1		
Client sampling date / time :		15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00		
Compound	Unit	ES1112949-010	ES1112949-011	ES1112949-012		
EP080S: TPH(V)/BTEX Surrogates						
Toluene-D8	%	93.2	98.6			
4-Bromofluorobenzene	%	95.0	93.1			

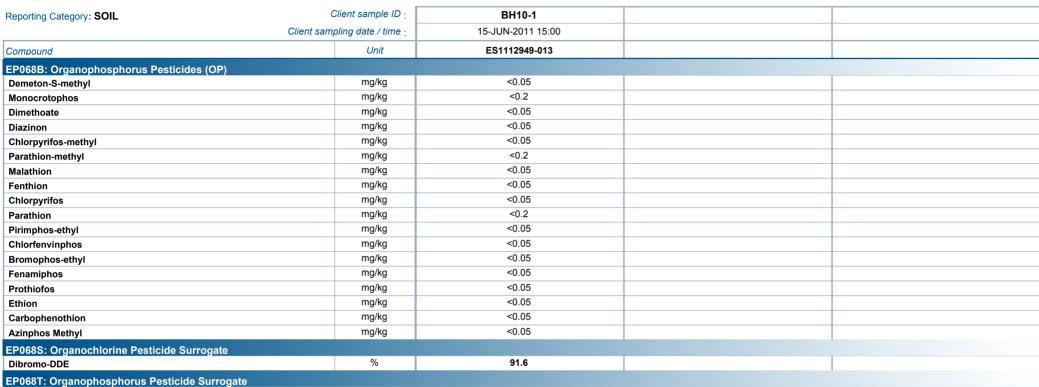
Page : 16 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS

Reporting Category: SOIL	Client sample ID :	BH10-1	
	Client sampling date / time :	15-JUN-2011 15:00	
Compound	Unit	ES1112949-013	
EA002 : pH (Soils)			
pH Value	pH Unit	5.8	
EA055: Moisture Content			
Moisture Content (dried @ 103°C)	%	12.8	
EG005T: Total Metals by ICP-AES			
Arsenic	mg/kg	<5	
Cadmium	mg/kg	<1	
Chromium	mg/kg	10	
Copper	mg/kg	<5	
Lead	mg/kg	8	
Nickel	mg/kg	5	
Zinc	mg/kg	9	
EG035T: Total Recoverable Mercury by FIMS			
Mercury	mg/kg	<0.1	
EP068A: Organochlorine Pesticides (OC)			
alpha-BHC	mg/kg	<0.05	
Hexachlorobenzene (HCB)	mg/kg	<0.05	
beta-BHC	mg/kg	<0.05	
gamma-BHC	mg/kg	<0.05	
delta-BHC	mg/kg	<0.05	
Heptachlor	mg/kg	<0.05	
Aldrin	mg/kg	<0.05	
Heptachlor epoxide	mg/kg	<0.05	
trans-Chlordane	mg/kg	<0.05	
alpha-Endosulfan	mg/kg	<0.05	
cis-Chlordane	mg/kg	<0.05	
Dieldrin	mg/kg	<0.05	
4.4`-DDE	mg/kg	<0.05	
Endrin	mg/kg	<0.05	
beta-Endosulfan	mg/kg	<0.05	
4.4`-DDD	mg/kg	<0.05	
Endrin aldehyde	mg/kg	<0.05	
Endosulfan sulfate	mg/kg	<0.05	
4.4`-DDT	mg/kg	<0.2	
Endrin ketone	mg/kg	<0.05	
Methoxychlor	mg/kg	<0.2	
EP068B: Organophosphorus Pesticides (OP)			
Dichlorvos	mg/kg	<0.05	


Page : 17 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Analytical Results

DEF

79.0

%

Page : 18 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS

Reporting Category: WATER	Client sample ID :	R1	D1	D2
	Client sampling date / time :	15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00
Compound	Unit	ES1112949-014	ES1112949-015	ES1112949-016
EA005: pH				
pH Value	pH Unit		7.15	7.42
EA010P: Conductivity by PC Titrator				
Electrical Conductivity @ 25°C	μS/cm		158	221
EA015: Total Dissolved Solids				
Total Dissolved Solids @180°C	mg/L		564	371
EG020T: Total Metals by ICP-MS				
Arsenic	mg/L	<0.001	0.002	0.006
Cadmium	mg/L	<0.0001	<0.0001	<0.0001
Chromium	mg/L	<0.001	0.004	0.007
Copper	mg/L	0.001	0.006	0.006
Nickel	mg/L	<0.001	0.005	0.011
Lead	mg/L	<0.001	0.004	0.006
Zinc	mg/L	<0.005	0.012	0.021
EG035T: Total Recoverable Mercury by FIMS	6			
Mercury	mg/L	<0.0001	<0.0001	<0.0001
EP025: Oxygen - Dissolved (DO)				
Dissolved Oxygen	mg/L		7.2	8.0
EP068A: Organochlorine Pesticides (OC)				
alpha-BHC	μg/L			<0.5
Hexachlorobenzene (HCB)	μg/L			<0.5
beta-BHC	μg/L			<0.5
gamma-BHC	μg/L			<0.5
delta-BHC	μg/L			<0.5
Heptachlor	μg/L			<0.5
Aldrin	μg/L			<0.5
Heptachlor epoxide	μg/L			<0.5
trans-Chlordane	μg/L			<0.5
alpha-Endosulfan	μg/L			<0.5
cis-Chlordane	μg/L			<0.5
Dieldrin	μg/L			<0.5
4.4`-DDE	μg/L			<0.5
Endrin	μg/L			<0.5
beta-Endosulfan	μg/L			<0.5
4.4`-DDD	μg/L			<0.5
Endrin aldehyde	μg/L			<0.5
Endosulfan sulfate	μg/L			<0.5
4.4`-DDT	μg/L			<2
				A Campbell Prothers Limited Company

Page : 19 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

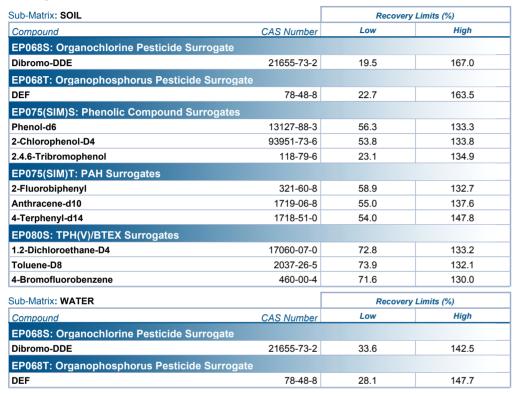
Reporting Category: WATER	Client sample ID :	R1	D1	D2
Clie	nt sampling date / time :	15-JUN-2011 15:00	15-JUN-2011 15:00	15-JUN-2011 15:00
Compound	Unit	ES1112949-014	ES1112949-015	ES1112949-016
EP068A: Organochlorine Pesticides (OC)				
Endrin ketone	μg/L			<0.5
Methoxychlor	μg/L			<2
EP068B: Organophosphorus Pesticides (OP)				
Dichlorvos	μg/L			<0.5
Demeton-S-methyl	μg/L			<0.5
Monocrotophos	μg/L			<2
Dimethoate	μg/L			<0.5
Diazinon	μg/L			<0.5
Chlorpyrifos-methyl	μg/L			<0.5
Parathion-methyl	μg/L			<2
Malathion	μg/L			<0.5
Fenthion	μg/L			<0.5
Chlorpyrifos	μg/L			<0.5
Parathion	μg/L			<2
Pirimphos-ethyl	μg/L			<0.5
Chlorfenvinphos	μg/L			<0.5
Bromophos-ethyl	μg/L			<0.5
Fenamiphos	μg/L			<0.5
Prothiofos	μg/L			<0.5
Ethion	μg/L			<0.5
Carbophenothion	μg/L			<0.5
Azinphos Methyl	μg/L			<0.5
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	%			89.6
EP068T: Organophosphorus Pesticide Surrogate				
DEF	%			105

Page : 20 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS


Reporting Category: WATER	Client sample ID :	D3	
Client san	pling date / time :	15-JUN-2011 15:00	
Compound	Unit	ES1112949-017	
EA005: pH			
pH Value	pH Unit	7.98	
EA010P: Conductivity by PC Titrator			
Electrical Conductivity @ 25°C	μS/cm	334	
EA015: Total Dissolved Solids			
Total Dissolved Solids @180°C	mg/L	1420	
EG020T: Total Metals by ICP-MS			
Arsenic	mg/L	0.010	
Cadmium	mg/L	<0.0001	
Chromium	mg/L	0.016	
Copper	mg/L	0.009	
Nickel	mg/L	0.018	
Lead	mg/L	0.012	
Zinc	mg/L	0.035	
EG035T: Total Recoverable Mercury by FIMS			
Mercury	mg/L	<0.0001	
EP025: Oxygen - Dissolved (DO)			
Dissolved Oxygen	mg/L	9.0	

Page : 21 of 21 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Surrogate Control Limits

Environmental Division

QUALITY CONTROL REPORT

: ES1112949 **Work Order** Page : 1 of 14 Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney : TREVOR LLOYD : Client Services Contact Contact Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 320 WILSTON QLD, AUSTRALIA 4057 E-mail E-mail : trevor@lloydconsulting.com.au : sydney@alsglobal.com Telephone : +61 07 33527300 Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500 QC Level Proiect : NEPM 1999 Schedule B(3) and ALS QCS3 requirement · 11-719 Site C-O-C number **Date Samples Received** : 17-JUN-2011 Issue Date Sampler : 27-JUN-2011 Order number No. of samples received : 17 Quote number · BN/299/10 No. of samples analysed · 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ashesh Patel	Inorganic Chemist	Sydney Inorganics	
Celine Conceicao	Spectroscopist	Sydney Inorganics	
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics	
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Phalak Inthaksone	Organics Co-ordinator	Sydney Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	
Wisam Marassa	A Campbell Brothers Limited Compactor	Sydney Inorganics	

Page : 2 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A055: Moisture Co	ontent (QC Lot: 183825	7)							
EP1103778-046	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	19.2	13.8	32.6	0% - 50%
P1103812-007	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	15.6	16.2	3.8	0% - 50%
A055: Moisture Co	ontent (QC Lot: 183825	8)							
ES1112949-008	BH6-1	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	18.9	19.8	4.6	0% - 50%
G005T: Total Meta	Is by ICP-AES (QC Lot								
S1112803-008	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
	-	EG005T: Chromium	7440-47-3	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.0	No Limit
S1112949-003	BH2-1	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	11	11	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	6	6	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	6	6	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	44	45	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	132	121	8.5	0% - 20%
G005T: Total Meta	Is by ICP-AES (QC Lot	: 1838836)							
S1112964-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	17	18	0.0	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	19	18	7.9	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	7	6	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	34	30	11.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	159	143	10.5	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	883	848	4.1	0% - 20%
S1112964-010	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	31	21	38.0	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	13	6	79.3	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	15	11	35.1	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	6	5	0.0	No Limit

Page : 4 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Reco	overable Mercury by FIN	MS (QC Lot: 1838835) - continued							
ES1112803-008	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES1112949-003	BH2-1	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	0.1	0.0	No Limit
EP068A: Organochlo	orine Pesticides (OC)(QC Lot: 1839308)							
ES1112911-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	osphorus Pesticides (O	P) (QC Lot: 1839308)							
ES1112911-001	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page : 5 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P068B: Organopho	osphorus Pesticides (Ol	P) (QC Lot: 1839308) - continued							
ES1112911-001	Anonymous	EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 1836685)							
S1112911-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
S1112949-008	BH6-1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 6 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1836606) - continued							
ES1112549-072	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1112959-002	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1836684)							
ES1112911-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1112949-008	BH6-1	EP071: C15 - C28 Fraction		100	mg/kg	180	150	13.5	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
FP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 1836606)							
ES1112549-072	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1112959-002	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ED090/071: Total Bo		ns - NEPM 2010 Draft (QC Lot: 1836684)			3 3				
ES1112911-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
201112011 001	Anonymous	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1112949-008	BH6-1	EP071: >C16 - C34 Fraction		100	mg/kg	190	160	15.4	No Limit
201112040 000	Bilo i	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EDAGO BIEVN (OC	L -4: 402CC0C)	EFO/ 1. 2010 - 010 Flaction		00	mg/kg	100	400	0.0	NO LITTLE
EP080: BTEXN (QC ES1112549-072	Anonymous	ED000, Departure	71-43-2	0.2	ma/ka	<0.2	<0.2	0.0	No Limit
E31112549-072	Anonymous	EP080: Benzene EP080: Toluene	108-88-3	0.2	mg/kg mg/kg	<0.5	<0.5	0.0	No Limit
			100-68-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	ilig/kg	~ 0.5	~ 0.5	0.0	NO LITTIC
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1112959-002	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
201112000 002	Tilonymode	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Folderie	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		LF 000. Meta- & para-xylene	106-42-3	0.0	mg/kg	10.0	10.0	0.0	140 Ellilli
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
		Li 000. Naphalaiche	3.200	•					
Sub-Matrix: WATER							Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot	1835362)								
ES1112947-007	Anonymous	EA005: pH Value		0.01	pH Unit	6.07	6.05	0.3	0% - 20%
ES1112949-017	D3	EA005: pH Value		0.01	pH Unit	7.98	8.02	0.5	0% - 20%

Page : 7 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA010P: Conductivi	ty by PC Titrator (QC Lot:	1836984)							
ES1112896-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	86	84	2.1	0% - 20%
ES1112949-017	D3	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	334	326	2.2	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 18366	05)							
ES1112628-012	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	5	mg/L	500	600	18.2	0% - 20%
ES1112868-002	Anonymous	EA015H: Total Dissolved Solids @180°C	GIS-210-010	5	mg/L	644	696	7.8	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 18406	84)							
ES1112949-016	D2	EA015H: Total Dissolved Solids @180°C	GIS-210-010	5	mg/L	371	380	2.4	0% - 20%
EG020T: Total Metal	s by ICP-MS (QC Lot: 183	8025)							
ES1112864-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.045	0.045	0.0	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.004	0.003	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.092	0.096	4.2	0% - 50%
ES1113012-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
EG035T: Total Reco	verable Mercury by FIMS	(QC Lot: 1842193)							
ES1112777-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	0.0002	0.0006	84.3	No Limit
ES1113087-010	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	1.29	1.29	0.3	0% - 20%

Page : 8 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 1838834)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	13.11 mg/kg	127	70	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	2.76 mg/kg	89.5	83.3	111
EG005T: Chromium	7440-47-3	2	mg/kg	<2	60.93 mg/kg	# 123	89.2	117
EG005T: Copper	7440-50-8	5	mg/kg	<5	54.68 mg/kg	109	90.1	114
EG005T: Lead	7439-92-1	5	mg/kg	<5	54.76 mg/kg	110	85.2	111
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.23 mg/kg	# 124	88.3	116
EG005T: Zinc	7440-66-6	5	mg/kg	<5	103.88 mg/kg	108	88.9	112
EG005T: Total Metals by ICP-AES (QCLot: 1838836)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	13.11 mg/kg	126	70	130
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	2.76 mg/kg	94.9	83.3	111
EG005T: Chromium	7440-47-3	2	mg/kg	<2	60.93 mg/kg	# 121	89.2	117
EG005T: Copper	7440-50-8	5	mg/kg	<5	54.68 mg/kg	112	90.1	114
EG005T: Lead	7439-92-1	5	mg/kg	<5	54.76 mg/kg	111	85.2	111
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.23 mg/kg	# 121	88.3	116
EG005T: Zinc	7440-66-6	5	mg/kg	<5	103.88 mg/kg	109	88.9	112
EG035T: Total Recoverable Mercury by FIMS (QCLot	t: 1838835)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	1.4 mg/kg	90.6	67	118
EP068A: Organochlorine Pesticides (OC) (QCLot: 18	39308)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	87.7	60.8	116
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	59.4	115
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.1	59.8	117
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.7	59.8	118
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	65.8	114
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	104	65.6	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	110	67	113
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	94.0	65.6	113
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	98.7	60.7	113
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	65.8	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	111	57.3	120
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	110	67.4	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	106	67.5	114
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	101	63	121
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	108	66.1	117
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	103	65.3	116

Page : 9 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068A: Organochlorine Pesticides (OC) (QCLot:	1839308) - continued							
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	90.0	57.3	115
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	109	63.6	119
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	112	58.4	127
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	102	63.6	117
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	107	50.4	132
EP068B: Organophosphorus Pesticides (OP) (QCL	ot: 1839308)							
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	25.5	124
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	10.1	159
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	82.5	2.88	149
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	100	48.6	126
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	107	64.9	111
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	101	65.1	111
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	112	61.4	113
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	102	60.4	127
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	110	64.7	110
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	110	64.2	111
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	106	60	116
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	110	64.8	111
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	108	61.4	123
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	106	64.3	114
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	111	45.5	128
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	107	65.4	111
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	105	62	116
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	97.3	59.5	119
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	110	29.8	137
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 1836685)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	106	81.9	113
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	91.1	79.6	113
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	109	81.5	112
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	110	79.9	112
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	109	79.4	114
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	108	81.1	112
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	110	78.8	113
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	110	78.9	113
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	106	77.2	112
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	103	79.8	114
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	92.4	71.8	118
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	92.1	74.2	117
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	106	76.4	113

Page : 10 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 1836685) - co	ntinued						
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	97.7	71	113
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	96.1	71.7	113
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	95.3	72.4	114
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 1836606)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	85.0	68.4	128
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 1836684)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	90.0	59	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	250 mg/kg	128	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	99.0	63	131
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft (QCLot: 1	836606)						
EP080: C6 - C10 Fraction		10	mg/kg	<10	31 mg/kg	87.4	68.4	128
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft (OCL of: 1	836684)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	95.2	59	131
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	104	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
El di il i doll'allaniani		50	mg/kg		150 mg/kg	81.3	63	131
EP080: BTEXN (QCLot: 1836606)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	91.0	63	121
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	71.6	69	122
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	81.6	61	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	86.5	62	118
7	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	85.9	63	117
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	115	63	131
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Penort	
Sub-Matrix. WATER				Report	Spike	Spike Recovery (%)	· ·	/ Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005: pH (QCLot: 1835362)								
EA005: pH (accet: 1655562)		0.01	pH Unit	<0.01				
			F. 7 5	3.0.				
EA010P: Conductivity by PC Titrator (QCLot: 1830 EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 µS/cm	107	86.3	112
			μονοιτί	71	2000 μο/οπ	101	00.0	112
EA015: Total Dissolved Solids (QCLot: 1836605)	GIS-210-010	5	ma/l	<5	202 mg/l	112	70	130
EA015H: Total Dissolved Solids @180°C	GIS-210-010	3	mg/L	<5	293 mg/L	112	70	130
EA015: Total Dissolved Solids (QCLot: 1840684)	010 010 010	_		_		0		122
EA015H: Total Dissolved Solids @180°C	GIS-210-010	5	mg/L	<5	293 mg/L	94.2	70	130
EG020T: Total Metals by ICP-MS (QCLot: 1838025	·							
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.2	85	111

Page : 11 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 1838	3025) - continued							
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.8	88	108
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.8	92	114
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	100	89	115
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.8	91	113
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	100	91	113
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	97.6	78	116
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 1842193)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	93.4	81	119
EP068A: Organochlorine Pesticides (OC) (QC	Lot: 1837320)							
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 μg/L	97.0	59.5	123
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 μg/L	95.0	58.4	121
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 μg/L	94.7	59.3	122
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 μg/L	108	59.1	121
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	5 μg/L	84.9	68	116
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	5 μg/L	97.4	67.1	116
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	5 μg/L	92.9	68.5	114
EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	5 μg/L	94.1	69.8	113
EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	5 μg/L	93.4	68.3	112
EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	5 μg/L	91.7	68.5	116
EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	5 μg/L	93.5	66.5	117
EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	5 μg/L	90.6	68.8	116
EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	5 μg/L	81.6	68.9	114
EP068: Endrin	72-20-8	0.5	μg/L	<0.5	5 μg/L	101	66.2	122
EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	5 μg/L	89.3	68	117
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	5 μg/L	93.7	68.2	117
EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	5 μg/L	92.7	66.6	117
EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	5 μg/L	111	65.9	119
EP068: 4.4`-DDT	50-29-3	2.0	μg/L	<2	5 μg/L	105	57.6	123
EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	5 μg/L	104	65	118
EP068: Methoxychlor	72-43-5	2.0	μg/L	<2	5 μg/L	104	49.6	134
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 1837320)							
EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	5 μg/L	85.6	56.9	128
EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	5 μg/L	87.6	26.8	154
EP068: Monocrotophos	6923-22-4	0.5	μg/L		5 μg/L	21.4	10	89.1
		2.0	μg/L	<2				
EP068: Dimethoate	60-51-5	0.5	μg/L	<0.5	5 μg/L	101	48.6	126
EP068: Diazinon	333-41-5	0.5	μg/L	<0.5	5 μg/L	101	66.5	115
EP068: Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	5 μg/L	104	69.5	112
EP068: Parathion-methyl	298-00-0	2.0	μg/L	<2	5 μg/L	93.2	63.9	115

Page : 12 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (O	P) (QCLot: 1837320) - continue	d						
EP068: Malathion	121-75-5	0.5	μg/L	<0.5	5 μg/L	98.4	59.8	127
EP068: Fenthion	55-38-9	0.5	μg/L	<0.5	5 μg/L	96.9	69.8	114
EP068: Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	5 μg/L	101	70	112
EP068: Parathion	56-38-2	2.0	μg/L	<2	5 μg/L	94.1	62.5	116
EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	5 μg/L	102	67.1	112
EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	5 μg/L	96.3	64	127
EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	5 μg/L	99.1	67.7	114
EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	5 μg/L	108	50.5	129
EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	5 μg/L	91.2	69.2	111
EP068: Ethion	563-12-2	0.5	μg/L	<0.5	5 μg/L	97.5	67	116
EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	5 μg/L	106	65	121
EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	5 μg/L	103	45.6	138

Page : 13 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

ALS

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL	Client sample D Client sample D Method: Compound 12803-008 Anonymous EG005T: Arsenic EG005T: Cadmium EG005T: Copper EG005T: Lead EG005T: Nickel			Matrix Spike (MS) Repo	rt		
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Metal	s by ICP-AES (QCLot: 1838834)						
ES1112803-008	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	85.3	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.4	70	130
			7440-47-3	50 mg/kg	104	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	96.8	70	130
			7439-92-1	250 mg/kg	96.5	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	101	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	94.0	70	130
G005T: Total Metal	s by ICP-AES (QCLot: 1838836)						
ES1112964-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	95.8	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	102	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	101	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	101	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	98.5	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	99.6	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	83.9	70	130
G035T: Total Reco	overable Mercury by FIMS (QCLo	of: 1838835)					
ES1112803-008	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.9	70	130
EP068A: Organochic	orine Pesticides (OC) (QCLot: 18						
ES1112911-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	95.6	70	130
201112311 001	Talonymous	EP068: Heptachlor	76-44-8	0.5 mg/kg	98.8	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	95.9	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	95.3	70	130
		EP068: Endrin	72-20-8	2 mg/kg	92.4	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	110	70	130
EDOCOD. Ownership	and a mar Bankinida (OB) (OC) a		00 20 0	z mg/ng	110	70	100
:P068B: Organopho ES1112911-001	osphorus Pesticides (OP) (QCLo		333-41-5	0.5 ma/ka	100	70	130
E31112911-001	Anonymous	EP068: Diazinon	5598-13-0	0.5 mg/kg 0.5 mg/kg	104	70	130
		EP068: Chlorpyrifos-methyl	23505-41-1	0.5 mg/kg	97.7	70	130
		EP068: Pirimphos-ethyl	4824-78-6		97.7	70	130
		EP068: Bromophos-ethyl	4824-78-6 34643-46-4	0.5 mg/kg	95.5 86.4	70	130
		EP068: Prothiofos	J404J-40-4	0.5 mg/kg	00.4	70	130
,	uclear Aromatic Hydrocarbons						
ES1112911-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	103	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	116	70	130

Page : 14 of 14 Work Order : ES1112949

Client : LLOYD CONSULTING

Sub-Matrix: SOIL					Matrix Spike (MS) Repo	rt	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080/071: Total Pet	troleum Hydrocarbons (QCLo	t: 1836606) - continued					
ES1112549-072	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	85.1	70	130
P080/071: Total Pet	troleum Hydrocarbons (QCLo	t: 1836684)					
ES1112911-001	Anonymous	EP071: C10 - C14 Fraction		640 mg/kg	96.2	73	137
		EP071: C15 - C28 Fraction		3140 mg/kg	107	53	131
		EP071: C29 - C36 Fraction		2860 mg/kg	95.2	52	132
P080/071: Total Re	coverable Hydrocarbons - NEF	PM 2010 Draft (QCLot: 1836606)					
S1112549-072	Anonymous	EP080: C6 - C10 Fraction		37.5 mg/kg	80.7	70	130
P080/071: Total Re	coverable Hydrocarbons - NEF	PM 2010 Draft (QCLot: 1836684)					
ES1112911-001	Anonymous	EP071: >C10 - C16 Fraction		850 mg/kg	104	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	102	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	84.8	52	132
P080: BTEXN (QCI	Lot: 1836606)						
ES1112549-072	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	97.4	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	77.0	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.2	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	80.9	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	84.7	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	88.8	70	130
ub-Matrix: WATER					Matrix Spike (MS) Repo	rt	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020T: Total Metal	s by ICP-MS (QCLot: 1838025						
ES1112750-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	91.8	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	92.7	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	93.2	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	93.0	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	91.4	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	88.2	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	96.0	70	130
G035T: Total Reco	overable Mercury by FIMS (QC	Lot: 1842193)					
ES1112788-001	Anonymous	EG035T: Mercury	7439-97-6	0.010 mg/L	73.6	70	130

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1112949** Page : 1 of 10

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney

Contact : TREVOR LLOYD Contact : Client Services

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 WILSTON QLD, AUSTRALIA 4057

Telephone : +61 07 33527300 Telephone : +61-2-8784 8555
Facsimile : ---- Facsimile : +61-2-8784 8500

Project : 11-719 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Site
 :--

 C-O-C number
 :-- Date Samples Received
 : 17-JUN-2011

Sampler :--- Issue Date : 27-JUN-2011
Order number :---

No. of samples received : 17
Quote number : BN/299/10 No. of samples analysed : 17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Sample Date	Fy	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
			Date extracted	Buc for extraction	Lvaldation	Date analysed	Duc for arranysis	Lvaldation	
EA002 : pH (Soils)						I	I		
Soil Glass Jar - Unpreserved BH1-1, BH2-1, BH3-1, BH5-1, BH7-1, BH8-1D, BH10-1	BH1-2, BH2-2, BH4-1, BH6-1, BH8-1, BH9-1,	15-JUN-2011	21-JUN-2011	22-JUN-2011	✓	21-JUN-2011	21-JUN-2011	✓	
EA055: Moisture Content									
Soil Glass Jar - Unpreserved BH1-1, BH2-1, BH3-1, BH5-1, BH7-1, BH8-1D, BH10-1	BH1-2, BH2-2, BH4-1, BH6-1, BH8-1, BH9-1,	15-JUN-2011				21-JUN-2011	29-JUN-2011	✓	
EG005T: Total Metals by ICP-AES									
Soil Glass Jar - Unpreserved BH1-1, BH2-1, BH3-1, BH5-1, BH7-1, BH8-1D, BH10-1	BH1-2, BH2-2, BH4-1, BH6-1, BH8-1, BH9-1,	15-JUN-2011	21-JUN-2011	12-DEC-2011	✓	22-JUN-2011	12-DEC-2011	✓	

Page : 3 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Matrix: SOIL					Evaluation	x = Holding time	breach ; ✓ = Within	n holding tir
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio
EG035T: Total Recoverable Mercury	by FIMS							
Soil Glass Jar - Unpreserved								
BH1-1,	BH1-2,	15-JUN-2011	21-JUN-2011	13-JUL-2011	✓	22-JUN-2011	13-JUL-2011	✓
BH2-1,	BH2-2,							
BH3-1,	BH4-1,							
BH5-1,	BH6-1,							
BH7-1,	BH8-1,							
BH8-1D, BH10-1	BH9-1,							
:P068A: Organochlorine Pesticides (OC)							
Soil Glass Jar - Unpreserved	,							
BH6-1,	BH7-1,	15-JUN-2011	21-JUN-2011	29-JUN-2011	✓	23-JUN-2011	31-JUL-2011	1
BH9-1,	BH10-1	1,000,1,201,1	21 0011 2011	20 0011 2011	Y	20 0011 2011	0.002 20	
P068B: Organophosphorus Pesticid	es (OP)							
Soil Glass Jar - Unpreserved								
BH6-1,	BH7-1,	15-JUN-2011	21-JUN-2011	29-JUN-2011	✓	23-JUN-2011	31-JUL-2011	✓
BH9-1,	BH10-1							
P075(SIM)B: Polynuclear Aromatic F	lydrocarbons							
Soil Glass Jar - Unpreserved								
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	20-JUN-2011	30-JUL-2011	✓
BH3-1,	BH4-1,							
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							
P080/071: Total Petroleum Hydrocar Soil Glass Jar - Unpreserved	bons					I		
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	20-JUN-2011	30-JUL-2011	1
BH3-1,	BH4-1,	15-3014-2011	20-30N-2011	29-JUN-2011	▼	20-JUN-2011	30-30L-2011	V
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							
Soil Glass Jar - Unpreserved								
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	21-JUN-2011	29-JUN-2011	/
BH3-1,	BH4-1,				,			
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							
P080/071: Total Recoverable Hydroc	arbons - NEPM 2010 Draft							
Soil Glass Jar - Unpreserved	DUO O							
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	20-JUN-2011	30-JUL-2011	✓
BH3-1, BH5-1,	BH4-1, BH6-1,							
впо-т, ВН8-1,	впо-т, ВН8-1D							
Soil Glass Jar - Unpreserved	טו וט- וט							
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	21-JUN-2011	29-JUN-2011	/
BH3-1,	BH4-1,	1.0 3014-2011		25 5511 2511	"		23 0011 2011	_
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							

Page : 4 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Matrix: SOIL					Evaluation:	: x = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEX								
Soil Glass Jar - Unpreserved								
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	21-JUN-2011	29-JUN-2011	✓
BH3-1,	BH4-1,				ľ			,
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							
EP080: BTEXN								
Soil Glass Jar - Unpreserved								
BH2-1,	BH2-2,	15-JUN-2011	20-JUN-2011	29-JUN-2011	✓	21-JUN-2011	29-JUN-2011	✓
BH3-1,	BH4-1,							
BH5-1,	BH6-1,							
BH8-1,	BH8-1D							
Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								
Clear Plastic Bottle - Natural								
D1,	D2,	15-JUN-2011				17-JUN-2011	15-JUN-2011	×
D3								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
D1,	D2,	15-JUN-2011		13-JUL-2011		23-JUN-2011	13-JUL-2011	✓
D3								
EA015: Total Dissolved Solids								
Clear Plastic Bottle - Natural								
D1,	D2,	15-JUN-2011				20-JUN-2011	22-JUN-2011	✓
D3								
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Natural								
R1		15-JUN-2011	21-JUN-2011	12-DEC-2011	✓	21-JUN-2011	12-DEC-2011	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered								
D1,	D2,	15-JUN-2011	21-JUN-2011	12-DEC-2011	✓	21-JUN-2011	12-DEC-2011	✓
D3								
EG035T: Total Recoverable Mercury by FIMS								
Clear Plastic Bottle - Natural								
R1		15-JUN-2011				23-JUN-2011	13-JUL-2011	✓
Clear Plastic Bottle - Nitric Acid; Unfiltered								
D1,	D2,	15-JUN-2011				23-JUN-2011	13-JUL-2011	✓
D3								
EP025: Oxygen - Dissolved (DO)								
Clear Plastic Bottle - Natural								
D1,	D2,	15-JUN-2011				17-JUN-2011	15-JUN-2011	×
D3								

Page : 5 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Matrix: WATER				Evaluation:	× = Holding time	breach; ✓ = Withir	n holding time.	
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP068A: Organochlorine Pesticides (OC)								
Amber Glass Bottle - Unpreserved								
D2	15-JUN-2011	20-JUN-2011	22-JUN-2011	✓	21-JUN-2011	30-JUL-2011	✓	
EP068B: Organophosphorus Pesticides (OP)								
Amber Glass Bottle - Unpreserved								
D2	15-JUN-2011	20-JUN-2011	22-JUN-2011	✓	21-JUN-2011	30-JUL-2011	✓	

Page : 6 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			Count	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	3	26	11.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	4	40	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	40	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	15	6.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	9	11.1	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	40	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	15	6.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.7	5.0	✓	ALS QCS3 requirement
Pesticides by GCMS	EP068	1	9	11.1	5.0	1	ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	1	ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	40	5.0	5.0	1	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	15	6.7	5.0	✓	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	1	ALS QCS3 requirement

Matrix: WATER

Evaluation: **x** = Quality Control frequency not within specification; **y** = Quality Control frequency within specification.

Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Conductivity by PC Titrator	EA010-P	2	10	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids (High Level)	EA015H	3	23	13.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							

Page : 7 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Matrix: WATER		Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within s						
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation		
Laboratory Control Samples (LCS) - Continued								
Conductivity by PC Titrator	EA010-P	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Pesticides by GCMS	EP068	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids (High Level)	EA015H	2	23	8.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Mercury by FIMS	EG035T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Method Blanks (MB)								
Conductivity by PC Titrator	EA010-P	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Pesticides by GCMS	EP068	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
рН	EA005	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids (High Level)	EA015H	2	23	8.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Mercury by FIMS	EG035T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Matrix Spikes (MS)								
Total Mercury by FIMS	EG035T	1	19	5.3	5.0	✓	ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	1	ALS QCS3 requirement	

Page : 8 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	(APHA 21st ed., 4500H+) pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (1999) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (1999) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 B This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids (High Level)	EA015H	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 9 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Analytical Methods	Method	Matrix	Method Descriptions
Oxygen - Dissolved	EP025	WATER	APHA 21st ed., 4500-O G. Dissolved Oxygen Probe. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Pesticides by GCMS	EP068	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.

Page : 10 of 10 Work Order : ES1112949

Client : LLOYD CONSULTING

Project : 11-719

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EG005T: Total Metals by ICP-AES	2166659-002		Chromium	7440-47-3	123 %	89.2-117%	Recovery greater than upper control limit
EG005T: Total Metals by ICP-AES	2166659-032		Chromium	7440-47-3	121 %	89.2-117%	Recovery greater than upper control limit
EG005T: Total Metals by ICP-AES	2166659-032		Nickel	7440-02-0	121 %	88.3-116%	Recovery greater than upper control limit
EG005T: Total Metals by ICP-AES	2166659-002		Nickel	7440-02-0	124 %	88.3-116%	Recovery greater than upper control limit

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

Method	flethod		traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005: pH							
Clear Plastic Bottle - Natural							
D1,	D2,				17-JUN-2011	15-JUN-2011	2
D3							
EP025: Oxygen - Dissolved (DO)							
Clear Plastic Bottle - Natural							
D1,	D2,				17-JUN-2011	15-JUN-2011	2
D3							

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Iloydconsulting

Laboratory Details Lab Quote Ref. 28 Shand St. Stafford QLD 4053 BN / 299 / 10 Ph:07 3243 7222 Email: samples.brisbane@alsenviro.com FOR LABORATORY USE ONLY (Circle) TURNAROUND REQUIREMENTS: Standard TAT (List due date):_ **Lioyd Consulting** CLIENT: Custody Seat Intact? Non Standard or urgent TAT (List due date):_ OFFICE: 30 Heather Street, Wilston, Q, 4051. Free ice / frozen ice bricks present upon COC SEQUENCE NUMBER (Circle) QUOTE NO .: PROJECT: receipt? ·c Random Sample Temperature on Receipt: ORDER NUMBER: Other comment: CONTACT PH: 07 3352 7300 PROJECT MANAGER: RECEIVED BY: RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY: SAMPLER MOBILE: SAMPLER: David EDD FORMAT (or default): COC emailed to ALS? (YES / NO) DATE/TIME: DATE/TIME: DATE/TIME: Email Reports to (PM firstname)@lloydconsulting.com.au; 1200 Email Invoice to (as above) COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) SAMPLE DETAILS Additional Information CONTAINER INFORMATION ALS USE ONLY MATRIX: Solid(S) Water(W) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc. TOTAL TYPE & PRESERVATIVE DATE / TIME MATRIX SAMPLE ID BOTTLES LAB ID (refer to codes below) h **Environmental Division** Sydney Work Order ES1115401

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airreight Unpreserved Plastic; V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VB = VOA Vial Sodium Preserved; VB = VOA Vial Sodium Preserved; VB = VOA Vial Sodium Preserved Plastic; V = VOA Vial Sodium Preserve

TOTAL

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Food/Pharmaceutical Division

CERTIFICATE OF ANALYSIS

Work Order : **ES1115401** Page : 1 of 7

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney

Contact : TREVOR LLOYD Contact : Client Services

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WILSTON QLD, AUSTRALIA 4057

Facsimile : ---- Facsimile : +61-2-8784 8500

Project : --- Quote number : BN/299/10

Order number : ---
Date Samples Received : 19-JUL-2011

No. of samples received : 6

No. of samples analysed : 6

Issue Date : 27-JUL-2011

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825/14610

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics
Greg Vogel	Laboratory Manager	Brisbane Inorganics
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics

Environmental Division Sydney
Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

General Comments

The analytical procedures used by the Food and Pharmaceutical Division have been developed from established internationally recognized procedures such as those published by the BP, USP, FCC and AOAC. In house developed procedures are employed in the absence of documented standards or by client request.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

EN055 - PG: lonic balance for sample ID' D3' outside acceptable limits due to analytes not determined for this work order.

Page : 3 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Reporting Category: WATER	Client sample ID :	D1	D2	D3
Client	t sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	15-JUL-2011 15:00
Compound	Unit	ES1115401-001	ES1115401-002	ES1115401-003
ED037P: Alkalinity by PC Titrator				
Hydroxide Alkalinity as CaCO3	mg/L	<1	<1	<1
Carbonate Alkalinity as CaCO3	mg/L	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	mg/L	57	56	169
Total Alkalinity as CaCO3	mg/L	57	56	169
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA				
Sulfate as SO4 - Turbidimetric	mg/L	16	9	18
ED045G: Chloride Discrete analyser				
Chloride	mg/L	17	22	11
ED093F: Dissolved Major Cations				
Calcium	mg/L	2	2	4
Magnesium	mg/L	4	2	9
Sodium	mg/L	30	39	75
Potassium	mg/L	12	5	5
EG020F: Dissolved Metals by ICP-MS				
Arsenic	mg/L	0.001	0.002	0.008
Cadmium	mg/L	<0.0001	<0.0001	0.0004
Chromium	mg/L	<0.001	0.001	<0.001
Copper	mg/L	0.004	0.005	0.003
Nickel	mg/L	0.002	0.003	0.002
Lead	mg/L	<0.001	<0.001	<0.001
Zinc	mg/L	<0.005	0.008	0.005
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser				
Nitrite + Nitrate as N	mg/L	0.11	0.10	0.42
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser				
Total Kjeldahl Nitrogen as N	mg/L	4.6	3.8	1.5
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyse				
Total Nitrogen as N	mg/L	4.7	3.9	1.9
EN055: Ionic Balance				
Total Anions	meq/L	1.95	1.93	4.06
Total Cations	meq/L	2.04	2.09	4.33
Ionic Balance	%			3.15

Page : 4 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Reporting Category: WATER	Client sample ID :	D4	D5	Q-D4
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	15-JUL-2011 15:00
Compound	Unit	ES1115401-004	ES1115401-005	ES1115401-006
ED037P: Alkalinity by PC Titrator				
Hydroxide Alkalinity as CaCO3	mg/L	<1	<1	<1
Carbonate Alkalinity as CaCO3	mg/L	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	mg/L	97	100	97
Total Alkalinity as CaCO3	mg/L	97	100	97
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA				
Sulfate as SO4 - Turbidimetric	mg/L	26	3	26
ED045G: Chloride Discrete analyser				
Chloride	mg/L	60	14	63
ED093F: Dissolved Major Cations				
Calcium	mg/L	12	9	12
Magnesium	mg/L	6	6	6
Sodium	mg/L	68	31	70
Potassium	mg/L	10	14	11
EG020F: Dissolved Metals by ICP-MS				
Arsenic	mg/L	<0.001	0.001	0.001
Cadmium	mg/L	<0.0001	<0.0001	<0.0001
Chromium	mg/L	<0.001	<0.001	<0.001
Copper	mg/L	0.003	0.002	0.003
Nickel	mg/L	0.003	0.002	0.003
Lead	mg/L	<0.001	<0.001	<0.001
Zinc	mg/L	<0.005	<0.005	<0.005
EG035F: Dissolved Mercury by FIMS				
Mercury	mg/L	<0.0001	<0.0001	<0.0001
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lvser			
Nitrite + Nitrate as N	mg/L	0.27	0.46	0.26
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser				
Total Kjeldahl Nitrogen as N	mg/L	0.8	1.1	0.7
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Ar	nalyser			
Total Nitrogen as N	mg/L	1.1	1.6	1.0
EN055: Ionic Balance				
Total Anions	meq/L	4.17	2.46	4.26
Total Cations	meq/L	4.31	2.65	4.42
Ionic Balance	%	1.56		1.85
EP068A: Organochlorine Pesticides (OC)				
alpha-BHC	μg/L	<0.5	<0.5	<0.5
Hexachlorobenzene (HCB)	μg/L	<0.5	<0.5	<0.5
,	1 - 1 -			1

Page : 5 of 7

Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

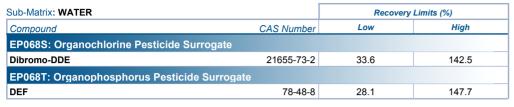
ALS

Reporting Category: WATER	Client sample ID :	D4	D5	Q-D4
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	15-JUL-2011 15:00
Compound	Unit	ES1115401-004	ES1115401-005	ES1115401-006
EP068A: Organochlorine Pesticides (OC)				
beta-BHC	μg/L	<0.5	<0.5	<0.5
gamma-BHC	μg/L	<0.5	<0.5	<0.5
delta-BHC	μg/L	<0.5	<0.5	<0.5
Heptachlor	μg/L	<0.5	<0.5	<0.5
Aldrin	μg/L	<0.5	<0.5	<0.5
Heptachlor epoxide	μg/L	<0.5	<0.5	<0.5
trans-Chlordane	μg/L	<0.5	<0.5	<0.5
alpha-Endosulfan	μg/L	<0.5	<0.5	<0.5
cis-Chlordane	μg/L	<0.5	<0.5	<0.5
Dieldrin	μg/L	<0.5	<0.5	<0.5
4.4`-DDE	μg/L	<0.5	<0.5	<0.5
Endrin	μg/L	<0.5	<0.5	<0.5
beta-Endosulfan	μg/L	<0.5	<0.5	<0.5
4.4`-DDD	μg/L	<0.5	<0.5	<0.5
Endrin aldehyde	μg/L	<0.5	<0.5	<0.5
Endosulfan sulfate	μg/L	<0.5	<0.5	<0.5
4.4`-DDT	μg/L	<2	<2	<2
Endrin ketone	μg/L	<0.5	<0.5	<0.5
Methoxychlor	μg/L	<2	<2	<2
EP068B: Organophosphorus Pesticides (OP)				
Dichlorvos	μg/L	<0.5	<0.5	<0.5
Demeton-S-methyl	μg/L	<0.5	<0.5	<0.5
Monocrotophos	μg/L	<2	<2	<2
Dimethoate	μg/L	<0.5	<0.5	<0.5
Diazinon	μg/L	<0.5	<0.5	<0.5
Chlorpyrifos-methyl	μg/L	<0.5	<0.5	<0.5
Parathion-methyl	μg/L	<2	<2	<2
Malathion	μg/L	<0.5	<0.5	<0.5
Fenthion	μg/L	<0.5	<0.5	<0.5
Chlorpyrifos	μg/L	<0.5	<0.5	<0.5
Parathion	μg/L	<2	<2	<2
Pirimphos-ethyl	μg/L	<0.5	<0.5	<0.5
Chlorfenvinphos	μg/L	<0.5	<0.5	<0.5
Bromophos-ethyl	μg/L	<0.5	<0.5	<0.5
Fenamiphos	μg/L	<0.5	<0.5	<0.5
Prothiofos	μg/L	<0.5	<0.5	<0.5
Ethion	μg/L	<0.5	<0.5	<0.5

Page : 6 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --


Reporting Category: WATER	Client sample ID :	D4	D5	Q-D4
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	15-JUL-2011 15:00
Compound	Unit	ES1115401-004	ES1115401-005	ES1115401-006
EP068B: Organophosphorus Pesticides (OP)				
Carbophenothion	μg/L	<0.5	<0.5	<0.5
Azinphos Methyl	μg/L	<0.5	<0.5	<0.5
EP068S: Organochlorine Pesticide Surrogate				
Dibromo-DDE	%	73.4	65.1	63.2
EP068T: Organophosphorus Pesticide Surrogate				
DEF	%	98.9	85.4	83.0

Page : 7 of 7 Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Surrogate Control Limits

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

: ES1115401 **Work Order** Page : 1 of 7 Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney : TREVOR LLOYD Contact Contact : Client Services Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 320 WILSTON QLD, AUSTRALIA 4057 E-mail E-mail : trevor@lloydconsulting.com.au : sydney@alsglobal.com Telephone : +61 07 33527300 Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500 QC Level Proiect : NEPM 1999 Schedule B(3) and ALS QCS3 requirement Site C-O-C number **Date Samples Received** : 19-JUL-2011 Issue Date Sampler : 27-JUL-2011 Order number No. of samples received : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples analysed

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

· BN/299/10

Quote number

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 6

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics
Greg Vogel	Laboratory Manager	Brisbane Inorganics
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics

Page : 2 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 7 Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED037P: Alkalinity I	by PC Titrator (QC Lot:	: 1880222)							
ES1115167-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	36	35	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	36	35	0.0	0% - 20%
ED041G: Sulfate (Tu	urbidimetric) as SO4 2-	by DA (QC Lot: 1880095)							
ES1115167-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	18	19	0.0	0% - 50%
ES1115401-001	D1	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	16	16	0.0	0% - 50%
ED045G: Chloride D	Discrete analyser (QC L	ot: 1880094)							
ES1115167-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	30	29	0.0	0% - 20%
ES1115401-004	D4	ED045G: Chloride	16887-00-6	1	mg/L	60	62	3.4	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot	: 1880093)							
ES1115162-013	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	24	24	0.0	0% - 20%
	-	ED093F: Magnesium	7439-95-4	1	mg/L	6	6	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	21	21	3.4 0% - 0.0 0% - 0.0 No 0.0 No 0.0 No 0.0 No 0.0 0% - 0.0 0% - 0.0 0% - 0.0 0% - 0.0 No 0.0 No	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.0	No Limit
ES1115162-023	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	11	11	0.0	0% - 50%
	-	ED093F: Magnesium	7439-95-4	1	mg/L	24	25	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	821	824	0.3	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	12	12	0.0	0% - 50%
ED093F: Dissolved	Major Cations (QC Lot	: 1880096)							
ES1115401-003	D3	ED093F: Calcium	7440-70-2	1	mg/L	5	4	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	10	8	29.6	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	80	78	2.4	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	12	9	23.6	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 1885070)							
ES1115337-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.013	0.005	91.3	No Limit
ES1115395-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0007	0.0007	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.001	0.002	0.0	No Limit

Page : 4 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved I	Metals by ICP-MS (QC Lot: 1	885070) - continued							
ES1115395-005	Anonymous	EG020A-F: Copper	7440-50-8	0.001	mg/L	0.020	0.020	0.0	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.013	0.013	0.0	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.080	0.078	2.0	0% - 50%
EG035F: Dissolved I	Mercury by FIMS (QC Lot: 18	385067)							
ES1115152-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES1115337-005	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 1883058)							
ES1115270-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.03	0.0	No Limit
ES1115271-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	0.0	No Limit
EK061G: Total Kjeld	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 1881198)							
ES1115168-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	0.1	0.0	No Limit
ES1115285-031	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit

Page : 5 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : ---

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED037P: Alkalinity by PC Titrator (QCLot: 18802	22)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	92.6	80.2	108	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCLot: 1880095)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	73.9	70	130	
ED045G: Chloride Discrete analyser (QCLot: 188	80094)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	95.2	70	130	
ED093F: Dissolved Major Cations (QCLot: 18800	093)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	99.8	88	110	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	101	90	110	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.7	81	107	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.3	89	109	
ED093F: Dissolved Major Cations (QCLot: 18800	096)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	98.2	88	110	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	99.7	90	110	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	95.7	81	107	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	95.9	89	109	
EG020F: Dissolved Metals by ICP-MS (QCLot: 18	885070)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.100 mg/L	97.8	86	124	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.100 mg/L	94.5	89	117	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.100 mg/L	101	88	127	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.200 mg/L	100	86	115	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.100 mg/L	100	91	113	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.100 mg/L	101	88	115	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.200 mg/L	98.8	86	120	
EG035F: Dissolved Mercury by FIMS (QCLot: 18									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	105	84	116	
EK059G: Nitrite plus Nitrate as N (NOx) by Disc	rete Analyser (QCLot: 1883	058)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	91.4	76.9	122	
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	alyser (QCLot: 1881198)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	98.5	62.4	140	
EP068A: Organochlorine Pesticides (OC) (QCLo	ot: 1881409)								
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 μg/L	104	59.5	123	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 μg/L	90.5	58.4	121	
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 μg/L	108	59.3	122	

Page : 6 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	oratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068A: Organochlorine Pesticides (OC) (QCLot: 18	881409) - continued							
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 μg/L	105	59.1	121
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	5 μg/L	105	68	116
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	5 μg/L	92.6	67.1	116
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	5 μg/L	102	68.5	114
EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	5 μg/L	105	69.8	113
EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	5 μg/L	103	68.3	112
EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	5 μg/L	100	68.5	116
EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	5 μg/L	103	66.5	117
EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	5 μg/L	103	68.8	116
EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	5 μg/L	102	68.9	114
EP068: Endrin	72-20-8	0.5	μg/L	<0.5	5 μg/L	113	66.2	122
EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	5 μg/L	108	68	117
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	5 μg/L	109	68.2	117
EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	5 μg/L	109	66.6	117
EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	5 μg/L	105	65.9	119
EP068: 4.4`-DDT	50-29-3	2.0	μg/L	<2	5 μg/L	109	57.6	123
EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	5 μg/L	111	65	118
EP068: Methoxychlor	72-43-5	2.0	μg/L	<2	5 μg/L	106	49.6	134
EP068B: Organophosphorus Pesticides (OP) (QCLo	ot: 1881409)							
EP068: Dichlorvos	62-73-7	0.5	μg/L	<0.5	5 μg/L	111	56.9	128
EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	5 μg/L	96.1	26.8	154
EP068: Monocrotophos	6923-22-4	0.5	μg/L		5 μg/L	26.3	10	89.1
·		2.0	μg/L	<2				
EP068: Dimethoate	60-51-5	0.5	μg/L	<0.5	5 μg/L	111	48.6	126
EP068: Diazinon	333-41-5	0.5	μg/L	<0.5	5 μg/L	109	66.5	115
EP068: Chlorpyrifos-methyl	5598-13-0	0.5	μg/L	<0.5	5 μg/L	99.6	69.5	112
EP068: Parathion-methyl	298-00-0	2.0	μg/L	<2	5 μg/L	110	63.9	115
EP068: Malathion	121-75-5	0.5	μg/L	<0.5	5 μg/L	106	59.8	127
EP068: Fenthion	55-38-9	0.5	μg/L	<0.5	5 μg/L	109	69.8	114
EP068: Chlorpyrifos	2921-88-2	0.5	μg/L	<0.5	5 μg/L	109	70	112
EP068: Parathion	56-38-2	2.0	μg/L	<2	5 μg/L	86.8	62.5	116
EP068: Pirimphos-ethyl	23505-41-1	0.5	μg/L	<0.5	5 μg/L	105	67.1	112
EP068: Chlorfenvinphos	470-90-6	0.5	μg/L	<0.5	5 μg/L	101	64	127
EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	5 μg/L	110	67.7	114
P068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	5 μg/L	111	50.5	129
EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	5 μg/L	109	69.2	111
EP068: Ethion	563-12-2	0.5	μg/L	<0.5	5 μg/L	107	67	116
EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	5 μg/L	111	65	121
EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	5 μg/L	107	45.6	138

Page : 7 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Tui	rbidimetric) as SO4 2- by D	A (QCLot: 1880095)					
ES1115167-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	77.2	70	130
ED045G: Chloride Di	screte analyser (QCLot: 18	380094)					
ES1115167-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	101	70	130
EG020F: Dissolved N	Metals by ICP-MS (QCLot: 1	1885070)					
ES1115337-005	Anonymous	EG020A-F: Arsenic	7440-38-2	0.100 mg/L	107	70	130
		EG020A-F: Cadmium	7440-43-9	0.100 mg/L	95.4	70	130
		EG020A-F: Chromium	7440-47-3	0.100 mg/L	95.0	70	130
		EG020A-F: Copper	7440-50-8	0.200 mg/L	98.0	70	130
		EG020A-F: Lead	7439-92-1	0.100 mg/L	91.2	70	130
		EG020A-F: Nickel	7440-02-0	0.100 mg/L	99.5	70	130
		EG020A-F: Zinc	7440-66-6	0.200 mg/L	101	70	130
EG035F: Dissolved N	Mercury by FIMS (QCLot: 1	885067)					
ES1115152-003	Anonymous	EG035F: Mercury	7439-97-6	0.010 mg/L	105	70	130
EK059G: Nitrite plus	Nitrate as N (NOx) by Disc	crete Analyser (QCLot: 1883058)					
ES1115270-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	79.8	70	130
EK061G: Total Kjelda	ahl Nitrogen By Discrete Ar	nalyser (QCLot: 1881198)					
ES1115168-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	102	70	130

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1115401** Page : 1 of 7

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney

Contact : TREVOR LLOYD Contact : Client Services

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 WILSTON QLD, AUSTRALIA 4057

Telephone : +61 07 33527300 Telephone : +61-2-8784 8555
Facsimile :---- Facsimile : +61-2-8784 8500

Project : ---- QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ---C-O-C number : ---- Date Samples Received : 19-JUL-2011

Sampler :---- Issue Date :27-JUL-2011

No. of samples received : 6
Quote number : BN/299/10 No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Order number

Page : 2 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: WATER

Evaluation: × = Holding time breach; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural D1, D3, D5,	D2, D4, Q-D4	15-JUL-2011		29-JUL-2011		21-JUL-2011	29-JUL-2011	✓
ED041G: Sulfate (Turbidimetric) as SO4	2- by DA							
Clear Plastic Bottle - Natural D1, D3, D5,	D2, D4, Q-D4	15-JUL-2011		12-AUG-2011		20-JUL-2011	12-AUG-2011	✓
ED045G: Chloride Discrete analyser								
Clear Plastic Bottle - Natural D1, D3, D5,	D2, D4, Q-D4	15-JUL-2011		12-AUG-2011		20-JUL-2011	12-AUG-2011	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural D1, D3, D5,	D2, D4, Q-D4	15-JUL-2011		22-JUL-2011		20-JUL-2011	22-JUL-2011	✓
EG020F: Dissolved Metals by ICP-MS	Q D-1							
Clear Plastic Bottle - Nitric Acid; Filter D1, D3, D5,	ed D2, D4, Q-D4	15-JUL-2011		11-JAN-2012		25-JUL-2011	11-JAN-2012	✓
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Nitric Acid; Filter D4, Q-D4	ed D5,	15-JUL-2011		12-AUG-2011		25-JUL-2011	12-AUG-2011	✓
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid D1, D3, D5,	D2, D4, Q-D4	15-JUL-2011		12-AUG-2011		22-JUL-2011	12-AUG-2011	✓

Page : 3 of 7
Work Order : ES1115401

Client : LLOYD CONSULTING

Project : ----

Matrix: WATER			Evaluation: × = Holding time breach ; ✓ = Within holding								
Method	Sample Date	Ex	traction / Preparation		Analysis						
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation				
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser										
Clear Plastic Bottle - Sulfuric Acid											
D1,	D2,	15-JUL-2011	21-JUL-2011	12-AUG-2011	✓	21-JUL-2011	12-AUG-2011	✓			
D3,	D4,				,			·			
D5,	Q-D4										
EP068A: Organochlorine Pesticides (OC	C)										
Clear Plastic Bottle - Natural											
D4,	D5,	15-JUL-2011	21-JUL-2011	22-JUL-2011	1	21-JUL-2011	30-AUG-2011	✓			
Q-D4					Ť			•			
EP068B: Organophosphorus Pesticides	s (OP)										
Clear Plastic Bottle - Natural											
D4,	D5,	15-JUL-2011	21-JUL-2011	22-JUL-2011	✓	21-JUL-2011	30-AUG-2011	✓			
Q-D4					,			,			

Page : 4 of 7

Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: ▼ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

IVIALIA. WATER					Quanty 00		of within specification, • - Quality Control frequency within specific		
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Alkalinity by PC Titrator	ED037-P	1	7	14.3	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Mercury by FIMS	EG035F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Dissolved	ED093F	3	14	21.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
_aboratory Control Samples (LCS)									
Alkalinity by PC Titrator	ED037-P	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	12	16.7	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Cations - Dissolved	ED093F	2	14	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Pesticides by GCMS	EP068	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Chloride by Discrete Analyser	ED045G	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Dissolved	ED093F	2	14	14.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Pesticides by GCMS	EP068	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
Chloride by Discrete Analyser	ED045G	1	12	8.3	5.0	✓	ALS QCS3 requirement		
Dissolved Mercury by FIMS	EG035F	1	20	5.0	5.0	1	ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.0	5.0	1	ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	1	ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.0	5.0	1	ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	1	ALS QCS3 requirement		

Page : 5 of 7

Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2- by	ED041G	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium
Discrete Analyser			with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	APHA 21st ed., 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises the 0.45um filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	APHA 21st ed., 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and
Analyser			direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg D. 25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500-Norg / 4500-NO3 This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA and ICPAES	EN055 - PG	WATER	APHA 21st Ed. 1030F. The Ionic Balance is calculated based on the major Anions and Cations. The major anions include Alkalinity, Chloride and Sulfate which determined by PCT and DA. The Cations are determined by ICPAES. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Pesticides by GCMS	EP068	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 6 of 7

Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 500 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2). ALS default excludes sediment which may be resident in the container.

Page : 7 of 7 Work Order : ES1115401

Client : LLOYD CONSULTING

Project : --

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

9 /	loyd consultin
------------	-----------------------

ALS Brisbane

Laboratory Details

		•			-							BN / 299 / 10) <u>.</u>	Pir.07 3243 7222 Email, samples brisbane@	alsanviro.com			
CLIENT:	Lloyd Consulting		TURNAROUND REQUIREMENTS : Standard TAT (List due date):								FOR	FOR LABORATORY USE ONLY. (Circle)						
OFFICE:	30 Heather Street, Wilston, Q. 4051			□ Non	Standard or u	rgent TAT (List	due date):		_		Custody Seal Intact? Yes No N/A						
PROJECT:	•		QUOTE NO.:						ENCE NUME	ER (Circle)	Free i		bricks presen	t upon Yes	No	N/A		
ORDER NUMBER:							coc:	1 2	3 4	5 6	7 Rando	om Sample Te	mperature on	Receipt: •	·c			
PROJECT MANAGER	52 7300			OF:	1 2	3 4	5 6	7 Other	comment:									
SAMPLER:	JISHED BY:	•	REC	EIVED BY:	649	Est.	RELINQUI	SHED BY:	•	RECEIVED BY		•						
COC emailed to ALS?	dt):	000			,01	** 0					1	v · ()						
Email Reports to (P	15 /	01		E/TIME:	1.1.		DATE/TIME											
Email Invoice to (as ab	17 00 000 (00	TINGU WIS	, WIII	ng.com.au 15/	7/11	2.10	<u>'</u>	13/	<u>7/1)</u>					19/7	1200	3		
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	\L: '		(····												
ALS USE ONLY		E DETAILS . lid(S) Water(W)		CONTAINER INFORMATIO	NI				_	(NB. Suite Cod				Additional	nformation	J .		
									•					Comments on likely con dilutions, or samples red	taminant level	ls,		
														analysis etc.	James operation	, , ,		
					i i		2	24-	-	$\times \vee$								
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES		-	\bigcirc	7	阳阳								
)	,	i	·~	E W								
		_	!			$\langle \mathcal{O} $		$\langle \dot{\gamma} \rangle$	H.	5,8			' .			•		
	0111	<u> </u>	ζ,		1		• ,			$-\infty$		· ·· ·						
1	BH1-1	15/7/11	<u>)</u>	 	1					V								
7	BH2-1	11	11		<u> </u>	$\sqrt{}$	<u> </u>		/_	<u> </u>				noisivia Division				
3	TP1-1.0	1417/11	- 44		1	4000	Environmental Divis Sydney						inev					
\sim (12)	TP1-1.5	11	ŧ,	4 6					<u>ו</u> ג ט	5	•	Work Order						
(3)	TP1-2:0	L(0 1 1 1 1 1					ES1115438					
- Ti	70.00		1)		1 ON HOLD													
(14)	172-0.2																	
1 3/2/5	T/2-0.5	લ	וי		1		<u>O^</u>	J 44	کدر)						UM _			
W.	TP2-1-0	l1	H I		1		01	1 40	LD	ALPARO	,			i i i i i i i i i i i i i i i i i i i 	1110			
. >	TP 2-8-2-0	11	1(/			· ·	1/	V		_ Tel	_{lephone} :	+61-2-8784 855	55			
(1)	TD3-1.21	ń	11		1		171	1 4										
6	T02-15	· · · · · · · · · · · · · · · · · · ·	, i		1		<i>\(\)</i>	V 719										
(r)	TP3 - 1.0	ા	11				01		n, h									
	111 3 - 1.0	<u>.</u>			+ / -		01	VH	رين									
Water Container Codes -	Theresee and Disaling Mr. Nicks D.	d Blancia, ODO a 1997 Barrier	IOBOL OU	TOTAL	$ / \infty $			#=== 11:			and Direct							
V = VOA Vial HCI Preserved	t; VB = VOA Vial Sodium Bisulphate Preserve Bottle; E = EDTA Preserved Bottles; ST = Ste	ed: VS = VOA Vial Sulfuric Preser	ved: AV = Airfi	Sodium Hydroxide/Cd Preserved; S = Sodium F eight Unpreserved Vial SG = Sulfuric Preserve Soils: B = Unoreserved Ban	nyuroxide ⊬reser d Amber Glass;	H = HC preser	ved Plasti	c; HS = HClp	reserved Spe	ciation boltle; S	rved Plastic SP = Sulfuric I	Preserved Pla	stic; F = Form	naldehyde Preserved Gla	ss;			

28 Shand St, Stafford QLD 4053.

Laboratory Details Lab Quote Ref.

BN / 299 / 10 .Pir:07 3243 7222 Email: samples.brisbane@alserviro.com CLIENT: Lloyd Consulting TURNAROUND REQUIREMENTS: Standard TAT (List due date): FOR LABORATORY USE ONLY (Circle) OFFICE: 30 Heather Street, Wilston, Q, 4051. Non Standard or urgent TAT (List due date): Custody Seal Intact? N/A Free ice / frozen ice bricks present upon PROJECT: QUOTE NO .: COC SEQUENCE NUMBER (Circle) N/A ORDER NUMBER: COC: 1 2 .3 4 5 6 Random Sample Temperature on Receipt: PROJECT MANAGER: CONTACT PH: 07 3352 7300 Other comment: SAMPLER MOBILE: RELINQUISHED BY: RECEIVED BY: SAMPLER: RECEIVED BY: RELINQUISHED BY: Davil COC emailed to ALS? (YES / NO) EDD FORMAT (or default): Email Reports to (PM firstname)@lloydconsulting.com.au; DATE/TIME: DATE/TIME: DATE/TIME: DATE/TIME: [9/7 1200 Email Invoice to (as above) COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ANALYSIS REQUIRED including SUITES (NB, Suite Codes must be listed to attract suite price) SAMPLE DETAILS ALS USE ONLY CONTAINER INFORMATION Additional Information MATRIX: Solid(S) Water(W) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). Comments on likely contaminant levels, ditutions, or samples requiring specific QC analysis etc. TYPE & PRESERVATIVE TOTAL DATE / TIME LABID SAMPLE ID MATRIX BOTTLES (refer to codes below) HOL 11 11 11 10 11 11 16 11 11 76 TOTAL

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; V = VOA Vial HCl Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved Plastic; F = Formaldehyde Preserved Glass; AC = Sulfuric Preserved Plastic; H = HCl preserved Plastic; HS = HCl preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; AC = Plastic Bag for Acid Sulphate Solits; B = Unpreserved Bag.

*** Iloydconsulting

Laboratory Details

• • • •					_								Lab Quote BN / 299 / 1		28 Shand St, Slafford QL Ph:07 3243 7222		·					
CLIENT:	Lloyd Consulting		TURNAR	OUND REQUIREMENTS :	Standard	Standard TAT (List due date):								FOR LABORATORY USE ONLY (Circle)								
OFFICE:	30 Heather Street, Wilston, Q, 4051		-		Non Standard or urgent TAT (List due date):								Custody Seal Intact? Yes No N/A									
PROJECT:			QUOTE N	······································								Fre	Free ice / frozen ice bricks present upon Yes No N/A									
ORDER NUMBER:					 			coc	1 2	3 4	5 6			emperature on	Receipt:	*c						
PROJECT MANAGER:		CONTACT	PH: 073	352 7300	OF: 1 2 3 4 5 6 7						7 Oth											
SAMPLER:		SAMPLER I	MOBILE:		RELINQUISH	7	RECEIVED BY:					UISHED BY:		RECEIVED BY:								
COC emailed to ALS? (YES / NO)	EDD FORM	AT (or defa	ult):		1	-		^	mozeu	C .				De	ا المار ال						
Email Reports to (PN	// firstname)@lloydconsulting.com.a	ıu;			DATE/TIME:	-/	/	DATE	/TIME:	-1		DATE/TI	ME:		DATE/TIME:	_						
Email Invoice to (as abo	ove)					5/7/	4			5/7/4					<u> </u>	7 1200	i					
COMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL:	•							' '					,							
ALSUSE ONLY SAMPLE DETAILS MATRIX: Solid(S) Water(W) CO				CONTAINER IN	FORMATION		ANALYSIS F			-			listed to attract		Additional Information							
															Comments on likely co dilutions, or samples re analysis etc.	ntaminant levels quiring specific (, dc					
LAB ID .	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		OTAL																
													,		:							
(25)	176-3-1.5	15/7/11	5			1		0	V /	10 L	<u>ک</u>		ļ.,,		,							
					-										•							
																•						
							'															
,																						
																	•					

		•																				
												,										
													1									
											 				-							
		,	lI		TOTAL									-								
later Container Codes: P	= Unpreserved Plastic; N = Nitric Preserve	d Plastic: ORC = Nitric Preserved	ORC: SH =	Spdium Hydroxide/Cd Preserved:	S = Sodium Hydro:	kide Preserve	d Plastic: AG = /	Amber Gi	ass Unorese	rved: AP - Aid	reight Unnre	served Plasti	<u>_l</u>	<u> </u>			<u>-</u>					

Water Container Codes: P = Unpreserved Plastic; N = Nifric Preserved Plastic; N = Nifric Preserv

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Food/Pharmaceutical Division

CERTIFICATE OF ANALYSIS

: ES1115438 **Work Order** Page : 1 of 12

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney Contact : MS LEONA KOPITTKE Contact

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WILSTON QLD, AUSTRALIA 4057

E-mail : leona@lloydconsulting.com.au E-mail : sydney@alsglobal.com Telephone : +61 07 33527300 Telephone : +61-2-8784 8555

Facsimile Facsimile : +61-2-8784 8500

Project Quote number : BN/299/10

Date Samples Received : 19-JUL-2011

No. of samples received : 26 No. of samples analysed : 11 Issue Date : 26-JUL-2011

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Order number

NATA Accredited Laboratory 825/14610

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: Client Services

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Sydney Inorganics
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

General Comments

The analytical procedures used by the Food and Pharmaceutical Division have been developed from established internationally recognized procedures such as those published by the BP, USP, FCC and AOAC. In house developed procedures are employed in the absence of documented standards or by client request.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Page : 3 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL	Client sample ID :	BH1-1	BH2-1	TP1-1.0
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	14-JUL-2011 15:00
Compound	Unit	ES1115438-001	ES1115438-002	ES1115438-003
EA002 : pH (Soils)				
pH Value	pH Unit	5.8	7.9	7.4
EA055: Moisture Content				
Moisture Content (dried @ 103°C)	%	10.1	9.4	5.7
EG005T: Total Metals by ICP-AES				
Arsenic	mg/kg	<5	<5	5
Cadmium	mg/kg	<1	<1	<1
Chromium	mg/kg	14	9	10
Copper	mg/kg	12	13	<5
Lead	mg/kg	21	10	74
Nickel	mg/kg	8	6	5
Zinc	mg/kg	128	132	104
EG035T: Total Recoverable Mercury by FI	MS			
Mercury	mg/kg	<0.1		<0.1
EP068A: Organochlorine Pesticides (OC)				
alpha-BHC	mg/kg		<0.05	
Hexachlorobenzene (HCB)	mg/kg		<0.05	
beta-BHC	mg/kg		<0.05	
gamma-BHC	mg/kg		<0.05	
delta-BHC	mg/kg		<0.05	
Heptachlor	mg/kg		<0.05	
Aldrin	mg/kg		<0.05	
Heptachlor epoxide	mg/kg		<0.05	
trans-Chlordane	mg/kg		<0.05	
alpha-Endosulfan	mg/kg		<0.05	
cis-Chlordane	mg/kg		<0.05	
Dieldrin	mg/kg		<0.05	
4.4`-DDE	mg/kg		<0.05	
Endrin	mg/kg		<0.05	
beta-Endosulfan	mg/kg		<0.05	
4.4`-DDD	mg/kg		<0.05	
Endrin aldehyde	mg/kg		<0.05	
Endosulfan sulfate	mg/kg		<0.05	
4.4`-DDT	mg/kg		<0.2	
Endrin ketone	mg/kg		<0.05	
Methoxychlor	mg/kg		<0.2	
EP068B: Organophosphorus Pesticides (C				
Dichlorvos	mg/kg		<0.05	

Page : 4 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL	Client sample ID :	BH1-1	BH2-1	TP1-1.0	
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	14-JUL-2011 15:00	
Compound	Unit	ES1115438-001	ES1115438-002	ES1115438-003	
EP068B: Organophosphorus Pesticides (OP)					
Demeton-S-methyl	mg/kg		<0.05		
Monocrotophos	mg/kg		<0.2		
Dimethoate	mg/kg		<0.05		
Diazinon	mg/kg		<0.05		
Chlorpyrifos-methyl	mg/kg		<0.05		
Parathion-methyl	mg/kg		<0.2		
Malathion	mg/kg		<0.05		
Fenthion	mg/kg		<0.05		
Chlorpyrifos	mg/kg		<0.05		
Parathion	mg/kg		<0.2		
Pirimphos-ethyl	mg/kg		<0.05		
Chlorfenvinphos	mg/kg		<0.05		
Bromophos-ethyl	mg/kg		<0.05		
Fenamiphos	mg/kg		<0.05		
Prothiofos	mg/kg		<0.05		
Ethion	mg/kg		<0.05		
Carbophenothion	mg/kg		<0.05		
Azinphos Methyl	mg/kg		<0.05		
EP080/071: Total Petroleum Hydrocarbons					
C6 - C9 Fraction	mg/kg	<10		<10	
C10 - C14 Fraction	mg/kg	<50		<50	
C15 - C28 Fraction	mg/kg	360		<100	
C29 - C36 Fraction	mg/kg	<100		<100	
C10 - C36 Fraction (sum)	mg/kg	360		<50	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2010 Draft				
C6 - C10 Fraction	mg/kg	<10		<10	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10		<10	
>C10 - C16 Fraction	mg/kg	<50		<50	
>C16 - C34 Fraction	mg/kg	330		<100	
>C34 - C40 Fraction	mg/kg	<100		<100	
>C10 - C40 Fraction (sum)	mg/kg	330		<50	
EP080: BTEX					
Benzene	mg/kg	<0.2		<0.2	
Toluene	mg/kg	<0.5		<0.5	
Ethylbenzene	mg/kg	<0.5		<0.5	
meta- & para-Xylene	mg/kg	<0.5		<0.5	
ortho-Xylene	mg/kg	<0.5		<0.5	

Page : 5 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL	Client sample ID :	BH1-1	BH2-1	TP1-1.0	
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	14-JUL-2011 15:00	
Compound	Unit	ES1115438-001	ES1115438-002	ES1115438-003	
EP080: BTEXN					
Sum of BTEX	mg/kg	<0.2		<0.2	
Total Xylenes	mg/kg	<0.5		<0.5	
Naphthalene	mg/kg	<1		<1	
EP068S: Organochlorine Pesticide Surrogate					
Dibromo-DDE	%		100		
EP068T: Organophosphorus Pesticide Surrogate					
DEF	%		88.0		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	%	105		113	
Toluene-D8	%	107		112	
4-Bromofluorobenzene	%	111		110	

Page : 6 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL	Client sample ID :	TP2-0.2	TP2-Q-2.0	TP3-0.5	
	Client sampling date / time :	14-JUL-2011 15:00	14-JUL-2011 15:00	14-JUL-2011 15:00	
Compound	Unit	ES1115438-004	ES1115438-005	ES1115438-006	
EA002 : pH (Soils)					
pH Value	pH Unit	6.4	7.1	6.9	
EA055: Moisture Content					
Moisture Content (dried @ 103°C)	%	4.8	5.5	4.7	
EG005T: Total Metals by ICP-AES					
Arsenic	mg/kg	5	5	<5	
Cadmium	mg/kg	<1	<1	<1	
Chromium	mg/kg	10	9	8	
Copper	mg/kg	6	<5	<5	
Lead	mg/kg	16	68	11	
Nickel	mg/kg	6	5	5	
Zinc	mg/kg	18	30	24	
EG035T: Total Recoverable Mercury by FIMS					
Mercury	mg/kg	<0.1	<0.1	<0.1	
EP080/071: Total Petroleum Hydrocarbons					
C6 - C9 Fraction	mg/kg	<10	<10	<10	
C10 - C14 Fraction	mg/kg	<50	<50	<50	
C15 - C28 Fraction	mg/kg	<100	<100	<100	
C29 - C36 Fraction	mg/kg	<100	<100	<100	
C10 - C36 Fraction (sum)	mg/kg	<50	<50	<50	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft				
C6 - C10 Fraction	mg/kg	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10	<10	<10	
>C10 - C16 Fraction	mg/kg	<50	<50	<50	
>C16 - C34 Fraction	mg/kg	<100	<100	<100	
>C34 - C40 Fraction	mg/kg	<100	<100	<100	
>C10 - C40 Fraction (sum)	mg/kg	<50	<50	<50	
EP080: BTEX					
Benzene	mg/kg	<0.2	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	mg/kg	<0.5	<0.5	<0.5	
EP080: BTEXN					
Sum of BTEX	mg/kg	<0.2	<0.2	<0.2	
Total Xylenes	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	mg/kg	<1	<1	<1	

Page : 7 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : ---

Reporting Category: SOIL Client sample ID:		TP2-0.2 TP2-Q-2.0		TP3-0.5
Client sampling date / time :		14-JUL-2011 15:00	14-JUL-2011 15:00	14-JUL-2011 15:00
Compound Unit		ES1115438-004	ES1115438-005	ES1115438-006
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	%	111	111	112
Toluene-D8	%	113	108	110
4-Bromofluorobenzene	%	114	108	111

Page : 8 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL	Client sample ID :	TP4-0.2	TP5-0.5	TP6-3-0.2	
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	15-JUL-2011 15:00	
Compound	Unit	ES1115438-007	ES1115438-008	ES1115438-009	
EA002 : pH (Soils)					
pH Value	pH Unit	6.6			
EA055: Moisture Content					
Moisture Content (dried @ 103°C)	%	13.3	9.7	11.6	
EG005T: Total Metals by ICP-AES					
Arsenic	mg/kg	6	<5	6	
Cadmium	mg/kg	<1	<1	<1	
Chromium	mg/kg	16	16	17	
Copper	mg/kg	10	<5	14	
Lead	mg/kg	15	8	12	
Nickel	mg/kg	11	5	10	
Zinc	mg/kg	72	12	49	
EG035T: Total Recoverable Mercury by FIMS					
Mercury	mg/kg	<0.1	<0.1	<0.1	
EP080/071: Total Petroleum Hydrocarbons					
C6 - C9 Fraction	mg/kg	<10	<10	<10	
C10 - C14 Fraction	mg/kg	<50	<50	<50	
C15 - C28 Fraction	mg/kg	<100	<100	<100	
C29 - C36 Fraction	mg/kg	<100	<100	<100	
C10 - C36 Fraction (sum)	mg/kg	<50	<50	<50	
EP080/071: Total Recoverable Hydrocarbons - NE	PM 2010 Draft				
C6 - C10 Fraction	mg/kg	<10	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10	<10	<10	
>C10 - C16 Fraction	mg/kg	<50	<50	<50	
>C16 - C34 Fraction	mg/kg	<100	<100	<100	
>C34 - C40 Fraction	mg/kg	<100	<100	<100	
>C10 - C40 Fraction (sum)	mg/kg	<50	<50	<50	
EP080: BTEX					
Benzene	mg/kg	<0.2	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	mg/kg	<0.5	<0.5	<0.5	
EP080: BTEXN					
Sum of BTEX	mg/kg	<0.2	<0.2	<0.2	
Total Xylenes	mg/kg	<0.5	<0.5	<0.5	
Naphthalene	mg/kg	<1	<1	<1	

Page : 9 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Reporting Category: SOIL Client sample ID:		TP4-0.2	TP4-0.2 TP5-0.5	
Client sam	15-JUL-2011 15:00 15-JUL-2011 15:00		15-JUL-2011 15:00	
Compound Unit		ES1115438-007	ES1115438-008	ES1115438-009
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	%	105	106	106
Toluene-D8 %		108	105	107
4-Bromofluorobenzene	%	108	105	108

Page : 10 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

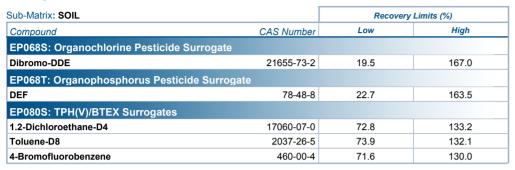
ALS

Reporting Category: SOIL	Client sample ID :	TP6-1-0.5	TP6-2-0.5	
	Client sampling date / time :	15-JUL-2011 15:00	15-JUL-2011 15:00	
Compound	Unit	ES1115438-010	ES1115438-011	
EA055: Moisture Content				
Moisture Content (dried @ 103°C)	%	12.9	15.4	
EG005T: Total Metals by ICP-AES				
Arsenic	mg/kg	6	6	
Cadmium	mg/kg	<1	<1	
Chromium	mg/kg	16	17	
Copper	mg/kg	14	14	
Lead	mg/kg	12	10	
Nickel	mg/kg	13	15	
Zinc	mg/kg	45	38	
EG035T: Total Recoverable Mercury by FIMS				
Mercury	mg/kg	<0.1	<0.1	
EP080/071: Total Petroleum Hydrocarbons				
C6 - C9 Fraction	mg/kg	<10	<10	
C10 - C14 Fraction	mg/kg	<50	<50	
C15 - C28 Fraction	mg/kg	<100	<100	
C29 - C36 Fraction	mg/kg	<100	<100	
C10 - C36 Fraction (sum)	mg/kg	<50	<50	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2010 Draft			
C6 - C10 Fraction	mg/kg	<10	<10	
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10	<10	
>C10 - C16 Fraction	mg/kg	<50	<50	
>C16 - C34 Fraction	mg/kg	<100	<100	
>C34 - C40 Fraction	mg/kg	<100	<100	
>C10 - C40 Fraction (sum)	mg/kg	<50	<50	
EP080: BTEX				
Benzene	mg/kg	<0.2	<0.2	
Toluene	mg/kg	<0.5	<0.5	
Ethylbenzene	mg/kg	<0.5	<0.5	
meta- & para-Xylene	mg/kg	<0.5	<0.5	
ortho-Xylene	mg/kg	<0.5	<0.5	
EP080: BTEXN				
Sum of BTEX	mg/kg	<0.2	<0.2	
Total Xylenes	mg/kg	<0.5	<0.5	
Naphthalene	mg/kg	<1	<1	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	%	99.6	90.4	
Toluene-D8	%	104	106	

Page : 11 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --


Reporting Category: SOIL Client sample ID:		TP6-1-0.5	TP6-2-0.5	
Client sampling date / time :		15-JUL-2011 15:00	15-JUL-2011 15:00	
Compound	Unit	ES1115438-010	ES1115438-011	
EP080S: TPH(V)/BTEX Surrogates				
4-Bromofluorobenzene	%	103	96.3	

Page : 12 of 12 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Surrogate Control Limits

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

: ES1115438 **Work Order** Page : 1 of 10 Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney : MS LEONA KOPITTKE Contact Contact : Client Services Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : PO BOX 320 WILSTON QLD, AUSTRALIA 4057 E-mail E-mail : leona@lloydconsulting.com.au : sydney@alsglobal.com Telephone : +61 07 33527300 Telephone : +61-2-8784 8555 Facsimile Facsimile : +61-2-8784 8500 QC Level Proiect : NEPM 1999 Schedule B(3) and ALS QCS3 requirement Site C-O-C number **Date Samples Received** : 19-JUL-2011 Issue Date Sampler : 26-JUL-2011 Order number No. of samples received : 26 Quote number · BN/299/10 No. of samples analysed · 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Sydney Inorganics	
Edwandy Fadjar	Senior Organic Chemist	Sydney Organics	
Evie.Sidarta	Inorganic Chemist	Sydney Inorganics	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Sarah Millington	Senior Inorganic Chemist	Sydney Inorganics	

Page : 2 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA002 : pH (Soils)	(QC Lot: 1882347)									
ES1115438-001	BH1-1	EA002: pH Value		0.1	pH Unit	5.8	6.0	2.2	0% - 20%	
EA055: Moisture Co	ontent (QC Lot: 188255	55)								
ES1115438-003	TP1-1.0	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	5.7	5.9	3.0	No Limit	
ES1115477-065	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	14.8	14.7	0.8	0% - 50%	
EG005T: Total Meta	als by ICP-AES (QC Lot									
ES1115438-001	BH1-1	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	14	14	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	8	8	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	12	12	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	21	19	12.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	128	121	5.4	0% - 20%	
ES1115438-011	TP6-2-0.5	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	17	16	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	15	15	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	6	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	14	14	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	10	10	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	38	37	3.0	No Limit	
EG035T: Total Rec	overable Mercury by Fl	IMS (QC Lot: 1882246)								
ES1115438-001	BH1-1	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
ES1115438-011	TP6-2-0.5	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit	
EP068A: Organoch	lorine Pesticides (OC)	(QC Lot: 1883268)								
ES1115099-010	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	

Page : 4 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P068A: Organochlo	orine Pesticides (OC) (QC Lot: 1883268) - continued							
S1115099-010	Anonymous	EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
S1115491-014	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
	EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit	
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P068B: Organopho	osphorus Pesticides (O								
S1115099-010	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
	,	EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit

Page : 5 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : ---

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report	1	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P068B: Organopho	osphorus Pesticides (O	P) (QC Lot: 1883268) - continued							
ES1115099-010	Anonymous	EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
S1115491-014	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P080/071: Total Pe	etroleum Hydrocarbons								
S1115438-001	BH1-1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1115491-004	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
								5.0	1.0 2
ES1115438-001	etroleum Hydrocarbons BH1-1			100	mg/kg	360	470	25.2	No Limit
_01110400-001	ווייווט	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		50		<50	< 100 < 50	0.0	No Limit
S1115604-021	Anonymous	EP071: C10 - C14 Fraction		100	mg/kg	<50 <100	<50 <100	0.0	No Limit No Limit
ESTT10004-021	Anonymous	EP071: C15 - C28 Fraction			mg/kg				
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit

Page : 6 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1882465) - continued							
ES1115604-021	Anonymous	EP071: C10 - C14 Fraction		50	mg/kg	90	90	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 1882317)							
ES1115438-001	BH1-1	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1115491-004	Anonymous	EP080: C6 - C10 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2010 Draft (QC Lot: 1882465)							
ES1115438-001	BH1-1	EP071: >C16 - C34 Fraction		100	mg/kg	330	430	26.1	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1115604-021	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	60	60	0.0	No Limit
EP080: BTEXN (QC	Lot: 1882317)								
ES1115438-001	BH1-1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1115491-004	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 7 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005T: Total Metals by ICP-AES (QCLot: 188	B2245)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	13.11 mg/kg	116	70	130	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	2.76 mg/kg	92.2	83.3	111	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	60.93 mg/kg	103	89.2	117	
EG005T: Copper	7440-50-8	5	mg/kg	<5	54.68 mg/kg	100	90.1	114	
EG005T: Lead	7439-92-1	5	mg/kg	<5	54.76 mg/kg	96.9	85.2	111	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.23 mg/kg	104	88.3	116	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	103.88 mg/kg	96.4	88.9	112	
EG035T: Total Recoverable Mercury by FIMS	(QCLot: 1882246)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	1.4 mg/kg	109	67	118	
EP068A: Organochlorine Pesticides (OC) (QC	Lot: 1883268)								
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	102	60.8	116	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	96.1	59.4	115	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	103	59.8	117	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	105	59.8	118	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	100	65.8	114	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.7	65.6	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	103	67	113	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	99.7	65.6	113	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	102	60.7	113	
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	105	65.8	116	
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	100	57.3	120	
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	67.4	116	
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	67.5	114	
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	109	63	121	
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.8	66.1	117	
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	65.3	116	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	98.5	57.3	115	
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	103	63.6	119	
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	93.9	58.4	127	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	109	63.6	117	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	84.4	50.4	132	
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 1883268)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	92.9	25.5	124	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	111	10.1	159	

Page : 8 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) (QCLot: 1	883268) - continue	d						
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	85.3	2.88	149
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	96.3	48.6	126
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	107	64.9	111
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	111	65.1	111
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	91.0	61.4	113
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	97.8	60.4	127
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	100	64.7	110
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	109	64.2	111
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	96.1	60	116
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	101	64.8	111
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	100	61.4	123
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	105	64.3	114
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	111	45.5	128
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	102	65.4	111
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	104	62	116
P068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	107	59.5	119
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	65.7	29.8	137
EP080/071: Total Petroleum Hydrocarbons (QCLot: 188	2317)							
:P080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	88.0	68.4	128
P080/071: Total Petroleum Hydrocarbons (QCLot: 188	2465)							
P071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	97.0	59	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	105	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	87.8	63	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	10 Draft (OCL of: 18	182317)						
EP080: C6 - C10 Fraction		10	mg/kg	<10	31 mg/kg	87.2	68.4	128
	40 Dueft (OC) et 40		mg/kg	-10	o i nigritg	01.2	00.1	120
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	10 Draft (QCLot: 18	50 50	mg/kg	<50	250 mg/kg	101	59	131
EP071: >C10 - C16 Fraction		100		<100	350 mg/kg	94.8	74	138
EP071: >C16 - C34 Fraction		100	mg/kg	<100		94.0		
EP071: >C34 - C40 Fraction		50	mg/kg mg/kg		150 mg/kg	64.4	63	131
		30	mg/kg		150 mg/kg	07.7	03	101
EP080: BTEXN (QCLot: 1882317)	74 40 0	0.3	ma = // - =	40.0	1 m = //	00.0	60	404
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	80.8	63	121
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	99.5	69	122
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	100	61	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	99.2	62	118
	106-42-3	0.5		10.5	4	105	00	447
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	105	63	117
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	115	63	131

Page : 9 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Metal	ls by ICP-AES (QCLot: 1882245	5)					
ES1115438-001	BH1-1	EG005T: Arsenic	7440-38-2	50 mg/kg	97.8	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.6	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	101	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	108	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	96.9	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	98.5	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	90.1	70	130
G035T: Total Reco	overable Mercury by FIMS (QCI	Lot: 1882246)					
ES1115438-001	BH1-1	EG035T: Mercury	7439-97-6	5 mg/kg	112	70	130
P068A: Organochi	orine Pesticides (OC) (QCLot:	1883268)					
ES1115099-010	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	102	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	91.6	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	94.0	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	98.0	70	130
		EP068: Endrin	72-20-8	2 mg/kg	103	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	93.3	70	130
P068B: Organopho	osphorus Pesticides (OP) (QCL	ot: 1883268)					
S1115099-010	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	103	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	100	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	103	70	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	98.1	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	96.6	70	130
P080/071: Total Pe	troleum Hydrocarbons (QCLot						
S1115438-001	BH1-1	EP080: C6 - C9 Fraction		32.5 mg/kg	107	70	130
P080/071: Total Po	troleum Hydrocarbons (QCLot						
ES1115438-001	BH1-1	EP071: C10 - C14 Fraction		640 mg/kg	99.5	73	137
201110400 001		EP071: C10 - C14 Fraction		3140 mg/kg	104	53	131
		EP071: C13 - C26 Fraction		2860 mg/kg	108	52	132
D000/074. Tatal Da	and the standard of the standa			2000 mg/kg	100	O.E.	102
ES1115438-001	BH1-1	M 2010 Draft (QCLot: 1882317)		37.5 ma/ka	106	70	130
		EP080: C6 - C10 Fraction		37.5 mg/kg	100	70	130
		M 2010 Draft (QCLot: 1882465)		0.50 "	40-		
ES1115438-001	BH1-1	EP071: >C10 - C16 Fraction		850 mg/kg	105	73	137
		EP071: >C16 - C34 Fraction		4800 mg/kg	106	53	131
		EP071: >C34 - C40 Fraction		2400 mg/kg	95.6	52	132

Page : 10 of 10 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : ---

Sub-Matrix: SOIL					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080: BTEXN (QC	Lot: 1882317)						
ES1115438-001	BH1-1	EP080: Benzene	71-43-2	2.5 mg/kg	77.7	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	88.3	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	86.5	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	86.6	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	89.7	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	85.6	70	130

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1115438** Page : 1 of 6

Client : LLOYD CONSULTING Laboratory : Environmental Division Sydney

Contact : MS LEONA KOPITTKE Contact : Client Services

Address : PO BOX 320 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

WILSTON QLD, AUSTRALIA 4057

Facsimile : +61-2-8784 8500

Project : .--- QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

C-O-C number : ---- Date Samples Received : 19-JUL-2011
Sampler : ---- Issue Date : 26-JUJ-2011

Sampler :--- Issue Date : 26-JUL-2011
Order number :----

No. of samples received : 26

Quote number : BN/299/10 No. of samples analysed : 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Site

Page : 2 of 6 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not guarantee a breach for all non-volatile parameters.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA002 : pH (Soils)									
Soil Glass Jar - Unpreserved TP1-1.0, TP2-Q-2.0,	TP2-0.2, TP3-0.5	14-JUL-2011	21-JUL-2011	21-JUL-2011	✓	21-JUL-2011	21-JUL-2011	✓	
Soil Glass Jar - Unpreserved BH1-1, TP4-0.2	BH2-1,	15-JUL-2011	21-JUL-2011	22-JUL-2011	✓	21-JUL-2011	21-JUL-2011	✓	
EA055: Moisture Content									
Soil Glass Jar - Unpreserved TP1-1.0, TP2-Q-2.0.	TP2-0.2, TP3-0.5	14-JUL-2011				21-JUL-2011	28-JUL-2011	✓	
Soil Glass Jar - Unpreserved BH1-1, TP4-0.2, TP6-3-0.2, TP6-2-0.5	BH2-1, TP5-0.5, TP6-1-0.5,	15-JUL-2011				21-JUL-2011	29-JUL-2011	✓	
EG005T: Total Metals by ICP-AES									
Soil Glass Jar - Unpreserved TP1-1.0, TP2-Q-2.0,	TP2-0.2, TP3-0.5	14-JUL-2011	21-JUL-2011	10-JAN-2012	✓	22-JUL-2011	10-JAN-2012	✓	
Soil Glass Jar - Unpreserved BH1-1, TP4-0.2, TP6-3-0.2,	BH2-1, TP5-0.5, TP6-1-0.5,	15-JUL-2011	21-JUL-2011	11-JAN-2012	✓	22-JUL-2011	11-JAN-2012	✓	
TP6-2-0.5 EG035T: Total Recoverable Mercury by FIMS									
Soil Glass Jar - Unpreserved TP1-1.0, TP2-Q-2.0,	TP2-0.2, TP3-0.5	14-JUL-2011	21-JUL-2011	11-AUG-2011	✓	22-JUL-2011	11-AUG-2011	✓	
Soil Glass Jar - Unpreserved BH1-1, TP5-0.5, TP6-1-0.5,	TP4-0.2, TP6-3-0.2, TP6-2-0.5	15-JUL-2011	21-JUL-2011	12-AUG-2011	✓	22-JUL-2011	12-AUG-2011	✓	

Page : 3 of 6
Work Order : ES1115438

Client : LLOYD CONSULTING

Project : ----

Matrix: SOIL					Evaluation	x = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	E)	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved								
BH2-1		15-JUL-2011	22-JUL-2011	29-JUL-2011	\checkmark	22-JUL-2011	31-AUG-2011	✓
EP068B: Organophosphorus Pesticides (OP	P)							
Soil Glass Jar - Unpreserved								
BH2-1		15-JUL-2011	22-JUL-2011	29-JUL-2011	✓	22-JUL-2011	31-AUG-2011	✓
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved								
TP1-1.0,	TP2-0.2,	14-JUL-2011	21-JUL-2011	28-JUL-2011	\checkmark	22-JUL-2011	28-JUL-2011	✓
TP2-Q-2.0,	TP3-0.5							
Soil Glass Jar - Unpreserved								
BH1-1,	TP4-0.2,	15-JUL-2011	21-JUL-2011	29-JUL-2011	\checkmark	22-JUL-2011	29-JUL-2011	✓
TP5-0.5,	TP6-3-0.2,							
TP6-1-0.5,	TP6-2-0.5							
EP080/071: Total Recoverable Hydrocarbons	s - NEPM 2010 Draft							
Soil Glass Jar - Unpreserved								
TP1-1.0,	TP2-0.2,	14-JUL-2011	21-JUL-2011	28-JUL-2011	\checkmark	22-JUL-2011	30-AUG-2011	✓
TP2-Q-2.0,	TP3-0.5							
Soil Glass Jar - Unpreserved								
BH1-1,	TP4-0.2,	15-JUL-2011	21-JUL-2011	29-JUL-2011	\checkmark	22-JUL-2011	30-AUG-2011	✓
TP5-0.5,	TP6-3-0.2,							
TP6-1-0.5,	TP6-2-0.5							
EP080: BTEX								
Soil Glass Jar - Unpreserved								
TP1-1.0,	TP2-0.2,	14-JUL-2011	21-JUL-2011	28-JUL-2011	\checkmark	22-JUL-2011	28-JUL-2011	✓
TP2-Q-2.0,	TP3-0.5							
Soil Glass Jar - Unpreserved								
BH1-1,	TP4-0.2,	15-JUL-2011	21-JUL-2011	29-JUL-2011	\checkmark	22-JUL-2011	29-JUL-2011	✓
TP5-0.5,	TP6-3-0.2,							
TP6-1-0.5,	TP6-2-0.5							
EP080: BTEXN								
Soil Glass Jar - Unpreserved								
TP1-1.0,	TP2-0.2,	14-JUL-2011	21-JUL-2011	28-JUL-2011	\checkmark	22-JUL-2011	28-JUL-2011	✓
TP2-Q-2.0,	TP3-0.5							
Soil Glass Jar - Unpreserved								
BH1-1,	TP4-0.2,	15-JUL-2011	21-JUL-2011	29-JUL-2011	\checkmark	22-JUL-2011	29-JUL-2011	✓
TP5-0.5,	TP6-3-0.2,							
TP6-1-0.5,	TP6-2-0.5							

Page : 4 of 6 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL** Evaluation: **×** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Wiatrix. SOIL				Lvaldatioi	i. • — Quality Col	introl inequency in	of Willin's pecilication, in a Quality Control frequency within specific
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH (1:5)	EA002	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ΓPH - Semivolatile Fraction	EP071	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ΓPH Volatiles/BTEX	EP080	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
_aboratory Control Samples (LCS)							
Pesticides by GCMS	EP068	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
ΓPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Pesticides by GCMS	EP068	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Pesticides by GCMS	EP068	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	20	5.0	5.0	✓	ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	12	8.3	5.0	✓	ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	ALS QCS3 requirement

Page : 5 of 6
Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	(APHA 21st ed., 4500H+) pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (1999) Schedule B(3) (Method 103)
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2010 Draft) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (1999) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (1999) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (1999) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (1999) Schedule B(3) (Method 506.1)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (1999) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	USEPA 200.2 Mod. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (1999) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 6 of 6 Work Order : ES1115438

Client : LLOYD CONSULTING

Project : --

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

APPENDIX H

RELATIVE PERCENT DIFFERENCE CALCULATIONS

Stage 1 Soil RPD Calculations

Analyte	Units	BH8-1	BH8-1D	RPD
Arsenic	mg/kg	<5	<5	0
Cadmium	mg/kg	<1	<1	0
Chromium	mg/kg	19	18	5
Copper	mg/kg	5	<5	200
Lead	mg/kg	25	20	22
Nickel	mg/kg	7	7	0
Zinc	mg/kg	12	13	8
Mercury	mg/kg	<0.1	<0.1	0
C6-C9	mg/kg	<10	<10	0
C10-C14	mg/kg	<50	<50	0
C15-C28	mg/kg	200	120	50
C29-C36	mg/kg	<10	<10	0
C10-C36	mg/kg	200	120	50
C6-C10 (new NEPM)	mg/kg	<10	<10	0
>C10-C16	mg/kg	<50	<50	0
>C16-C34	mg/kg	210	140	40
>C34-C40	mg/kg	<100	<100	0
>C10-C40 (Sum)	mg/kg	210	140	40
Benzene	mg/kg	<0.2	<0.2	0
Toluene	mg/kg	<5	<5	0
Ethyl benzene	mg/kg	<5	<5	0
meta- & para- Xylene	mg/kg	<5	<5	0
ortho-Xylene	mg/kg	<5	<5	0
Sum of BTEX	mg/kg	<0.2	<0.2	0
Total Xylenes	mg/kg	<5	<5	0
Naphthalene	mg/kg	<5	<5	0
Acenaphthylene	mg/kg	<5	<5	0
Acenaphthene	mg/kg	<5	<5	0
Fluorene	mg/kg	<5	<5	0
Phenanthrene	mg/kg	<5	<5	0
Anthracene	mg/kg	<5	<5	0
Flouranthene	mg/kg	<5	<5	0
Pyrene	mg/kg	<5	<5	0
Benz(a)anthracene	mg/kg	<5	<5	0
Chrysene	mg/kg	<5	<5	0
Benzo(b)flouranthene	mg/kg	<5	<5	0
Benzo(k)flouranthene	mg/kg	<5	<5	0
Benzo(a)pyrene	mg/kg	<5	<5	0
Indeno(1.2.3.cd)pyrene	mg/kg	<5	<5	0
Dibenz(a.h)anthracene	mg/kg	<5	<5	0
Benzo(g.h.i)perylene	mg/kg	<5	<5	0
Sum of Polycyclic aromatic hydrocarbons	mg/kg	<5	<5	0

Stage 2 Soil RPD Calculations

Analyte	Units	TP2-0.2	TP2-Q-2.0	RPD
Arsenic	mg/kg	5	5	0
Cadmium	mg/kg	<1	<1	NA
Chromium	mg/kg	10	9	11
Copper	mg/kg	6	<5	18
Lead	mg/kg	16	68	124
Nickel	mg/kg	6	5	18
Zinc	mg/kg	18	30	50
Mercury	mg/kg	<0.1	<0.1	NA
C6 - C9 Fraction	mg/kg	<10	<10	NA
C10 - C14 Fraction	mg/kg	<50	<50	NA
C15 - C28 Fraction	mg/kg	<100	<100	NA
C29 - C36 Fraction	mg/kg	<100	<100	NA
C10 - C36 Fraction (sum)	mg/kg	<50	<50	NA
C6 - C10 Fraction	mg/kg	<10	<10	NA
C6 - C10 Fraction minus BTEX (F1)	mg/kg	<10	<10	NA
>C10 - C16 Fraction	mg/kg	<50	<50	NA
>C16 - C34 Fraction	mg/kg	<100	<100	NA
>C34 - C40 Fraction	mg/kg	<100	<100	NA
>C10 - C40 Fraction (sum)	mg/kg	<50	<50	NA
Benzene	mg/kg	<0.2	<0.2	NA
Toluene	mg/kg	<0.5	<0.5	NA
Ethylbenzene	mg/kg	<0.5	<0.5	NA
meta- & para-Xylene	mg/kg	<0.5	<0.5	NA
ortho-Xylene	mg/kg	<0.5	<0.5	NA
Sum of BTEX	mg/kg	<0.2	<0.2	NA
Total Xylenes	mg/kg	<0.5	<0.5	NA
Naphthalene	mg/kg	<1	<1	NA

Stage 2 Surface Water RPD Calculations

Analyte	Units	D4	Q-D4	RPD
Hydroxide Alkalinity as CaCO3	mg/L	<1	<1	NA
Carbonate Alkalinity as CaCO3	mg/L	<1	<1	NA
Bicarbonate Alkalinity as CaCO3	mg/L	97	97	0
Total Alkalinity as CaCO3	mg/L	97	97	0
Sulfate as SO4 - Turbidimetric	mg/L	26	26	0
Chloride	mg/L	60	63	5
Calcium	mg/L	12	12	0
Magnesium	mg/L	6	6	0
Sodium	mg/L	68	70	3
Potassium	mg/L	10	11	10
Arsenic	mg/L	<0.001	0.001	0
Cadmium	mg/L	<0.0001	<0.0001	NA
Chromium	mg/L	<0.001	<0.001	NA
Copper	mg/L	0.003	0.003	0
Nickel	mg/L	0.003	0.003	0
Lead	mg/L	<0.001	<0.001	NA
Zinc	mg/L	< 0.005	<0.005	NA
Mercury	mg/L	<0.0001	<0.0001	NA
Nitrite + Nitrate as N	mg/L	0.27	0.26	4
Total Kjeldahl Nitrogen as N	mg/L	0.8	0.7	13
Total Nitrogen as N	mg/L	1.1	1.0	10
Total Anions	meq/L	4.17	4.26	2
Total Cations	meq/L	4.31	4.42	3
Ionic Balance	%	1.56	1.85	17
alpha-BHC	μg/L	<0.5	<0.5	NA
Hexachlorobenzene (HCB)	μg/L μg/L	<0.5	<0.5	NA NA
beta-BHC		<0.5	<0.5	NA NA
gamma-BHC	μg/L μg/L	<0.5	<0.5	NA NA
delta-BHC		<0.5	<0.5	NA NA
Heptachlor	μg/L	<0.5	<0.5	NA NA
Aldrin	μg/L	<0.5	+	NA NA
	μg/L	<0.5	<0.5 <0.5	
Heptachlor epoxide trans-Chlordane	μg/L	1		NA NA
alpha-Endosulfan	μg/L	<0.5 <0.5	<0.5 <0.5	NA NA
-	μg/L			
cis-Chlordane	μg/L	<0.5 <0.5	<0.5	NA NA
Dieldrin	μg/L		<0.5	NA NA
4.4`-DDE	μg/L	<0.5	<0.5	NA
Endrin	μg/L	<0.5	<0.5	NA
beta-Endosulfan	μg/L	<0.5	<0.5	NA NA
4.4`-DDD	μg/L	<0.5	<0.5	NA NA
Endrin aldehyde	μg/L	<0.5	<0.5	NA
Endosulfan sulfate	μg/L	<0.5	<0.5	NA
4.4`-DDT	μg/L	<2	<2	NA
Endrin ketone	μg/L	<0.5	<0.5	NA
Methoxychlor	μg/L	<2	<2	NA
Dichlorvos	μg/L	<0.5	<0.5	NA
Demeton-S-methyl	μg/L	<0.5	<0.5	NA
Monocrotophos	μg/L	<2	<2	NA
Dimethoate	μg/L	<0.5	<0.5	NA
Diazinon	μg/L	<0.5	<0.5	NA
Chlorpyrifos-methyl	μg/L	<0.5	<0.5	NA

Analyte	Units	D4	Q-D4	RPD
Parathion-methyl	μg/L	<2	<2	NA
Malathion	μg/L	<0.5	<0.5	NA
Fenthion	μg/L	<0.5	<0.5	NA
Chlorpyrifos	μg/L	<0.5	<0.5	NA
Parathion	μg/L	<2	<2	NA
Pirimphos-ethyl	μg/L	<0.5	<0.5	NA
Chlorfenvinphos	μg/L	<0.5	<0.5	NA
Bromophos-ethyl	μg/L	<0.5	<0.5	NA
Fenamiphos	μg/L	<0.5	<0.5	NA
Prothiofos	μg/L	<0.5	<0.5	NA
Ethion	μg/L	<0.5	<0.5	NA
Carbophenothion	μg/L	<0.5	<0.5	NA
Azinphos Methyl	μg/L	<0.5	<0.5	NA